首页> 外文期刊>Expert Systems with Application >An improved grey relational analysis approach for panel data clustering
【24h】

An improved grey relational analysis approach for panel data clustering

机译:面板数据聚类的改进的灰色关联分析方法

获取原文
获取原文并翻译 | 示例

摘要

An enhanced grey clustering analysis method based on accumulation sequences using grey relational analysis (AGRA) is put forward for specifying hierarchies of clusters in panel data. The clustering method can handle panel data containing N samples, each of which has m time series of indicators for which the observations for a given time series can be measured at different times than other series and contain different numbers of data points compared to other series. The overall clustering approach, which is called the Mean-AGRA clustering method, contains three main parts: a sequence of transformations of each separate time series: appropriate pairwise comparisons of the grey relational degree of an AGRA model for each pair of samples, across all samples as well as appropriate combinations thereafter, for three specific types of grey relational degrees; clustering all samples according to their AGRA degrees. To demonstrate how this new clustering method can be utilized in practice, it is applied to panel data consisting of 12 natural environmental indicators and 8 societal time series (m = 20) for 30 provinces (N = 30) in mainland China. The findings clarify how, for example, the provinces in China can be meaningfully categorized according to topography into two main groups consisting of plateaus and plains. The new method can handle different lengths of time series within a sample and across samples, which is useful when values occur at different times when comparing any two series. Moreover, the new clustering method avoids the problem of combining two samples having a limited degree of similarity, which exists in the traditional method. Consequently, the AGRA model and Mean-AGRA clustering method have expanded the scope of application of grey relational and clustering analysis. (C) 2015 Elsevier Ltd. All rights reserved.
机译:提出了一种基于累积序列的灰色关联分析(AGRA)的增强灰色聚类分析方法,用于指定面板数据中的聚类层次。聚类方法可以处理包含N个样本的面板数据,每个样本具有m个时间序列的指标,对于给定时间序列的观测值可以在与其他序列不同的时间进行测量,并且与其他序列相比包含不同数量的数据点。总体聚类方法(称为Mean-AGRA聚类方法)包含三个主要部分:每个独立时间序列的转换序列:在所有样本中,对每对样本的AGRA模型的灰色关联度进行适当的成对比较三种特定类型的灰色关联度的样本以及此后的适当组合;根据其AGRA度对所有样本进行聚类。为了演示这种新的聚类方法如何在实践中得到利用,将其应用于包含12个自然环境指标和中国大陆30个省(N = 30)的8个社会时间序列(m = 20)的面板数据。这些发现阐明了如何根据地形将中国各省有意义地分类为高原和平原两大类。新方法可以处理一个样本内和多个样本之间不同长度的时间序列,这在比较任何两个序列的不同时间出现值时非常有用。此外,新的聚类方法避免了传统方法中存在的相似度有限的两个样本合并的问题。因此,AGRA模型和Mean-AGRA聚类方法扩展了灰色关联和聚类分析的应用范围。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2015年第23期|9105-9116|共12页
  • 作者单位

    Ocean Univ China, Sch Econ, Qingdao 266100, Peoples R China|Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada|Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Jiangsu, Peoples R China;

    Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada|Ctr Int Governance Innovat, Waterloo, ON N2L 6C2, Canada;

    Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clustering; Panel data; Grey relational analysis; Chinese panel data;

    机译:聚类;面板数据;灰色关联分析;中文面板数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号