首页> 外文期刊>Expert Systems with Application >Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network
【24h】

Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network

机译:用于多路口网络的智能布谷鸟搜索优化交通信号控制器

获取原文
获取原文并翻译 | 示例

摘要

Traffic congestion in urban roads is one of the biggest challenges of 21 century. Despite a myriad of research work in the last two decades, optimization of traffic signals in network level is still an open research problem. This paper for the first time employs advanced cuckoo search optimization algorithm for optimally tuning parameters of intelligent controllers. Neural Network (NN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are two intelligent controllers implemented in this study. For the sake of comparison, we also implement Q-learning and fixed-time controllers as benchmarks. Comprehensive simulation scenarios are designed and executed for a traffic network composed of nine four-way intersections. Obtained results for a few scenarios demonstrate the optimality of trained intelligent controllers using the cuckoo search method. The average performance of NN, ANFIS, and Q-learning controllers against the fixed-time controller are 44%, 39%, and 35%, respectively. (C) 2015 Elsevier Ltd. All rights reserved.
机译:城市道路的交通拥堵是21世纪的最大挑战之一。尽管在过去的二十年中进行了大量的研究工作,但是在网络级优化交通信号仍然是一个开放的研究问题。本文首次采用先进的布谷鸟搜索优化算法来优化智能控制器的参数。神经网络(NN)和自适应神经模糊推理系统(ANFIS)是本研究中实现的两个智能控制器。为了进行比较,我们还将Q学习和固定时间控制器作为基准。针对由九个四通路口组成的交通网络,设计并执行了全面的仿真方案。在一些情况下获得的结果证明了使用杜鹃搜索方法训练的智能控制器的最优性。与固定时间控制器相比,NN,ANFIS和Q学习控制器的平均性能分别为44%,39%和35%。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号