首页> 外文期刊>Expert Systems with Application >Identifying typical approaches and errors in Prolog programming with argument-based machine learning
【24h】

Identifying typical approaches and errors in Prolog programming with argument-based machine learning

机译:通过基于参数的机器学习识别Prolog编程中的典型方法和错误

获取原文
获取原文并翻译 | 示例

摘要

Students learn programming much faster when they receive feedback. However, in programming courses with high student-teacher ratios, it is practically impossible to provide feedback to all homeworks submitted by students. In this paper, we propose a data-driven tool for semi-automatic identification of typical approaches and errors in student solutions. Having a list of frequent errors, a teacher can prepare common feedback to all students that explains the difficult concepts. We present the problem as supervised rule learning, where each rule corresponds to a specific approach or error. We use correct and incorrect submitted programs as the learning examples, where patterns in abstract syntax trees are used as attributes. As the space of all possible patterns is immense, we needed the help of experts to select relevant patterns. To elicit knowledge from the experts, we used the argument-based machine learning (ABML) method, in which an expert and ABML interactively exchange arguments until the model is good enough. We provide a step-by-step demonstration of the ABML process, present examples of ABML questions and corresponding expert’s answers, and interpret some of the induced rules. The evaluation on 42 Prolog exercises further shows the usefulness of the knowledge elicitation process, as the models constructed using ABML achieve significantly better accuracy than the models learned from human-defined patterns or from automatically extracted patterns.
机译:收到反馈后,学生可以更快地学习编程。但是,在高师生比例的编程课程中,几乎不可能为学生提交的所有作业提供反馈。在本文中,我们提出了一种用于半自动识别学生解决方案中典型方法和错误的数据驱动工具。有了常见错误的清单,老师可以为所有学生准备常见的反馈,以解释困难的概念。我们以监督规则学习的形式提出问题,其中每个规则对应于一种特定的方法或错误。我们使用正确和错误的已提交程序作为学习示例,其中抽象语法树中的模式用作属性。由于所有可能模式的空间都很大,因此我们需要专家的帮助来选择相关模式。为了从专家那里获取知识,我们使用了基于参数的机器学习(ABML)方法,其中专家和ABML交互交换参数,直到模型足够好为止。我们将逐步演示ABML流程,提供ABML问题示例和相应专家的答案,并解释一些归纳规则。对42个Prolog练习的评估进一步显示了知识启发过程的有用性,因为使用ABML构建的模型比从人类定义的模式或从自动提取的模式中学到的模型具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号