首页> 外文期刊>Evolutionary computation >Hyperplane-Approximation-Based Method for Many-Objective Optimization Problems with Redundant Objectives
【24h】

Hyperplane-Approximation-Based Method for Many-Objective Optimization Problems with Redundant Objectives

机译:基于超平面逼近的多余目标优化问题的方法

获取原文
获取原文并翻译 | 示例

摘要

For a many-objective optimization problem with redundant objectives, we propose two novel objective reduction algorithms for linearly and, nonlinearly degenerate Pareto fronts. They are called LHA and NLHA respectively. The main idea of the proposed algorithms is to use a hyperplane with non-negative sparse coefficients to roughly approximate the structure of the PF. This approach is quite different from the previous objective reduction algorithms that are based on correlation or dominance structure. Especially in NLHA, in order to reduce the approximation error, we transform a nonlinearly degenerate Pareto front into a nearly linearly degenerate Pareto front via a power transformation. In addition, an objective reduction framework integrating a magnitude adjustment mechanism and a performance metric sigma* are also proposed here. Finally, to demonstrate the performance of the proposed algorithms, comparative experiments are done with two correlation-based algorithms, LPCA and NLMVUPCA, and with two dominance-structure-based algorithms, PCSEA and greedy delta-MOSS, on three benchmark problems: DTLZ5(I,M), MAOP(I,M), and WFG3(I,M). Experimental results show that the proposed algorithms are more effective.
机译:对于具有冗余目标的多目标优化问题,我们提出了两种新的客观减少算法,用于线性和非线性地堕落的帕累托前线。它们分别被称为LHA和NLHA。所提出的算法的主要思想是使用具有非负稀疏系数的超平面,以大致近似PF的结构。这种方法与基于相关性或优势结构的先前的客观减少算法是完全不同的。特别是在NLHA中,为了降低近似误差,我们通过电力变换将非线性退化的帕累托前进的几乎线性退化的帕累托前进。另外,这里还提出了整合幅度调节机构和性能度量Sigma *的客观减少框架。最后,为了证明所提出的算法的性能,对比例进行了三种基于相关的算法,LPCA和NLMVUPCA,以及三个基于基于基于算法的算法,PCSEA和贪婪的三角洲 - 莫斯,在三个基准问题:DTLZ5(我,m),maop(i,m)和wfg3(i,m)。实验结果表明,所提出的算法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号