首页> 外文期刊>Evolutionary computation >Multimodal Function Optimization Using Minimal Representation Size Clustering and Its Application to Planning Multipaths
【24h】

Multimodal Function Optimization Using Minimal Representation Size Clustering and Its Application to Planning Multipaths

机译:基于最小表示大小聚类的多峰函数优化及其在规划多路径中的应用

获取原文
获取原文并翻译 | 示例

摘要

A novel genetic algorithm (GA) using minimal representation size cluster (MRSC) analysis is designed and implemented for solving multimodal function optimization problems. The problem of multimodal function optimization is framed within a hypothesize-and-test paradigm using minimal representation size (minimal complexity) for species formation and a GA. A multiple-population GA is developed to identify different species. The number of populations, thus the number of different species, is determined by the minimal representation size criterion. Therefore, the proposed algorithm reveals the unknown structure of the multimodal function when a priori knowledge about the function is unknown. The effectiveness of the algorithm is demonstrated on a number of multimodal test functions. The proposed scheme results in a highly parallel algorithm for finding multiple local minima. In this paper, a path-planning algorithm is also developed based on the MRSC-GA algorithm. The algorithm utilizes MRSC_GA for planning paths for mobile robots, piano-mover problems, and N-link manipulators. The MRSC_GA is used for generating multipaths to provide alternative solutions to the path-planning problem. The generation of alternative solutions is especially important for planning paths in dynamic environments. A novel iterative multiresolution path representation is used as a basis for the GA coding. The effectiveness of the algorithm is demonstrated on a number of two-dimensional path-planning problems.
机译:设计并实现了一种使用最小表示尺寸聚类(MRSC)分析的新型遗传算法(GA),用于解决多峰函数优化问题。多峰函数优化问题是在假设和测试范式中进行构造的,该范式使用最小的表示大小(最小的复杂性)进行物种形成和遗传算法。开发了多种群的GA以识别不同的物种。种群数量,即不同物种的数量,是由最小表示尺寸标准确定的。因此,当关于该函数的先验知识未知时,所提出的算法揭示了该多峰函数的未知结构。该算法的有效性在许多多峰测试功能上得到了证明。所提出的方案导致了用于寻找多个局部极小值的高度并行算法。本文还基于MRSC-GA算法开发了一种路径规划算法。该算法利用MRSC_GA来规划移动机器人,钢琴移动问题和N链接操纵器的路径。 MRSC_GA用于生成多路径,以为路径规划问题提供替代解决方案。替代解决方案的生成对于动态环境中的路径规划尤为重要。一种新颖的迭代多分辨率路径表示用作GA编码的基础。在许多二维路径规划问题上证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号