首页> 外文期刊>Evolutionary computation >Advanced fitness landscape analysis and the performance of memetic algorithms
【24h】

Advanced fitness landscape analysis and the performance of memetic algorithms

机译:高级健身景观分析和模因算法的性能

获取原文
获取原文并翻译 | 示例

摘要

Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search.This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.
机译:模因算法(MA)已证明在组合优化中非常有效。本文通过从效率和有效性方面对MA的性能进行调查,解释了为何如此。使用一类特殊的MA来讨论局部搜索和进化元搜索的效率和有效性。结果表明,使用领域知识可以极大地提高MA的效率。但是,有效性在很大程度上取决于问题的结构。众所周知,通过适应性景观的概念可以更轻松地识别此结构:适应性景观的局部属性强烈影响局部搜索的有效性,而全局属性强烈影响进化元搜索的有效性。本文还介绍了用于分析组合问题的适应度景观的新技术;这些技术着重于研究健身景观中从局部最优解开始的随机游走,以及从当前局部最优解吸引盆地的逃逸。对于无约束二进制二次规划问题(BQP)的NK景观和景观显示,随机游走到另一个局部最优值可以用来解释重组与突变相比的效率。此外,本文表明,其他方面,如局部最优景点的盆地大小,对于MA的效率也很重要,并提出了局部搜索逃逸分析。这些简单的分析技术相对于先前提出的统计方法具有多个优点,并提供了对MA在不同种类景观上的行为的宝贵见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号