首页> 外文期刊>Evolutionary computation >Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis
【24h】

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

机译:用于符号回归和布尔函数综合的能力几何语义遗传程序设计

获取原文
获取原文并翻译 | 示例

摘要

Program semantics is a promising recent research thread in Genetic Programming (GP). Over adozen semantic-aware search, selection, and initialization operators for GP have been proposed to date. Some of these operators are designed to exploit the geometric properties of semantic space, while others focus on making offspring effective, that is, semantically different from their parents. Only asmall fraction of previous works aimed at addressing both of these features simultaneously. In this article, we propose asuite of competent operators that combine effectiveness with geometry for population initialization, mate selection, mutation, and crossover. We present atheoretical rationale behind these operators and compare them experimentally to operators known from literature on symbolic regression and Boolean function synthesis benchmarks. We analyze each operator in isolation as well as verify how they fare together in an evolutionary run, concluding that the competent operators are superior on awide range of performance indicators, including best-of-run fitness, test-set fitness, and programsize.
机译:程序语义是遗传编程(GP)的一个有前途的最新研究线程。迄今为止,已经提出了针对GP的语义感知搜索,选择和初始化运算符。这些运算符中的一些被设计为利用语义空间的几何属性,而其他一些则专注于使后代有效,即在语义上不同于其父代。以前的工作中只有一小部分旨在同时解决这两个功能。在本文中,我们提出了一组称职的算子,这些算子将有效性与几何形状相结合,用于种群初始化,配偶选择,变异和交叉。我们提出了这些算子的理论基础,并将它们与符号回归和布尔函数综合基准文献中的算子进行了实验比较。我们单独分析每个运营商,并验证他们在进化过程中的表现如何,得出结论,称职的运营商在广泛的绩效指标(包括最佳运行适应性,测试集适应性和程序大小)方面表现优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号