首页> 外文期刊>Aequationes mathematicae >Sur la dégénérescence de quelques formules de connexion pour les fonctions hypergéométriques de Gauss
【24h】

Sur la dégénérescence de quelques formules de connexion pour les fonctions hypergéométriques de Gauss

机译:关于高斯超几何函数的某些连接公式的退化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

It is well known that there exists an operation of limit that makes the degeneration of Gauss hypergeometric differential equation to the confluent hypergeometric differential equation. With this operation, we calculate the degeneration of connection formulas of Gauss hypergeometric function explicitely. This kind of degeneration connects the theory of analytic continuation of Gauss hypergeometric function with that of confluent hypergeometric function. In the case of the connection formula between 0 and $infty$ ( $S$ 2), we would like to calculate the limit of the formula: 1.4 $$F(alpha, beta, gamma, z/beta) = {frac{Gamma(gamma)Gamma(beta-alpha)}{Gamma(beta)Gamma(gamma-alpha)}}(e^{-pi i}z/beta)^{-alpha}F(alpha, 1 , +, alpha , -, gamma, 1,+,alpha , - ,beta, beta/z) +{frac{Gamma(gamma)Gamma(alpha-beta)}{Gamma(alpha)Gamma(gamma-beta)}}(e^{-pi i}z/beta)^{-beta}F(beta, 1+beta - gamma, 1+ beta -alpha , beta/z)$$ as $betarightarrowinfty$ . It is the problem that the right-hand side of (1.4) diverges if we take the limit $betarightarrowinfty$ for it directly. The problem will be resolved if we follow the following procedure: First, we replace $(e^{-pi i}Z/beta)^{-beta}F(beta , 1+beta - gamma ,1+beta - alpha ,beta /z)$ in the right-hand side of (1.4) by, after Kummer [4], the function $(e^{-pi i}z/beta)^{alpha -gamma}(1+e^{-pi i}z/beta)^{gamma-alpha-beta}F(1-alpha,gamma - alpha , beta-alpha+1,beta/z)$ . Next, we replace the two functions $F(alpha,1+alpha -gamma,1+alpha-beta,beta/z)$ and $F(1-alpha,gamma-alpha,beta-alpha+1,beta/z)$ by suitable Pochhammer integral representations. After these replacements, if we take the limit $betarightarrow e^{i theta}infty$ , then we have (Théorème 2.5) 2.9 $$F(alpha,gamma,z)={frac{Gamma(gamma)z^{-alpha}}{Gamma(gamma-alpha)Gamma(alpha)(e^{pi i alpha}-e^{-pi i alpha})}}int_{e^{i (theta-pi)}infty}^{(0 + )} e^{-upsilon}upsilon^{alpha-1}left(1+{frac{upsilon}{z}} right)^{gamma-alpha-1}dupsilon, +, {frac{Gamma(gamma)z^{alpha-gamma}e^z}{Gamma(alpha)Gamma(gamma-alpha)(e^{2pi i (gamma-alpha)}-1)}}int_{e^{i (theta-pi)}infty}^{(0 + )} e^{-upsilon}upsilon^{gamma-alpha-1}left(1-frac{upsilon}{z} right)^{alpha-1}dupsilon$$ (if $frac{1}{2}pi < theta < pi , text{or},pi < theta < frac{3}{2}pi$ ) under certain conditions for the parameters $alpha, beta, gamma$ and the independent variable z. A similar procedure works also for the case of the connection formula between 0 and 1 ( $S$ 3, Théorème 3.5).
机译:众所周知,存在极限运算,该极限运算使高斯超几何微分方程退化为合流超几何微分方程。通过此操作,我们可以明确计算高斯超几何函数的连接公式的退化。这种退化将高斯超几何函数的解析连续性理论与合流超几何函数的理论连续性联系起来。对于0到$ infty $($ S $ 2)之间的连接公式,我们想计算公式的极限:1.4 $$ F(alpha,beta,gamma,z / beta)= {frac {伽玛(γ)伽玛(beta-alpha)} {伽玛(beta)伽玛(alpha)}}(e ^ {-pi i} z / beta)^ {-alpha} F(alpha,1,+,alpha ,-,γ,1,+,alpha,-,beta,beta / z)+ {frac {Gamma(γ)Gamma(alpha-beta)} {Gamma(α)Gamma(γ-beta)}}(e ^ {-pi i} z / beta)^ {-beta} F(beta,1 + beta-gamma,1+ beta -alpha,beta / z)$$作为$ betarightarrowinfty $。如果我们直接取极限$ betarightarrowinfty $,则(1.4)的右侧会出现问题。如果遵循以下步骤,该问题将得到解决:首先,我们替换$(e ^ {-pi i} Z / beta)^ {-beta} F(beta,1 + beta-gamma,1 + beta-alpha, beta(z)/(1.4)右边,由Kummer [4]之后,函数$(e ^ {-pi i} z / beta)^ {alpha -gamma}(1 + e ^ { -pi i} z / beta)^ {gamma-alpha-beta} F(1-alpha,gamma-alpha,beta-alpha + 1,beta / z)$。接下来,我们替换两个函数$ F(alpha,1 + alpha -gamma,1 + alpha-beta,beta / z)$和$ F(1-alpha,gamma-alpha,beta-alpha + 1,beta / z )$由适当的Pochhammer积分表示。在这些替换之后,如果取极限$ betarightarrow e ^ {i theta} infty $,则我们有(Théorème2.5)2.9 $$ F(alpha,gamma,z)= {frac {Gamma(gamma)z ^ {- alpha}} {Gamma(gamma-alpha)Gamma(alpha)(e ^ {pi i alpha} -e ^ {-pi i alpha})}}} int_ {e ^ {i(theta-pi)} infty} ^ { (0 +)} e ^ {-upsilon} upsilon ^ {alpha-1}左(1+ {frac {upsilon} {z}}右)^ {gamma-alpha-1} dupsilon,+,{frac {Gamma( γ)z ^ {α-γ} e ^ z} {γ(γ)γ(α-γ)(e ^ {2pi i(γ-α)}-1)}} int_ {e ^ {i(theta- pi)} infty} ^ {(0 +)} e ^ {-upsilon} upsilon ^ {gamma-alpha-1} left(1-frac {upsilon} {z} right)^ {alpha-1} dupsilon $$(如果$ frac {1} {2} pi

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号