首页> 外文期刊>Environmental Science & Technology >Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells
【24h】

Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells

机译:葡萄糖发酵途径的变化对微生物电解池中游离氨浓度的响应

获取原文
获取原文并翻译 | 示例
       

摘要

When a mixed-culture microbial electrolysis cell (MEC) is fed with a fermentable substrate, such as glucose, a significant fraction of the substrate's electrons ends up as methane (CH_4) through hydrogenotrophic methanogenesis, an outcome that is undesired. Here, we show that free ammonia-nitrogen (FAN, which is NH_3) altered the glucose fermentation pathways in batch MECs, minimizing the production of H_2 the "fuel" for hydrogenotrophic metha-nogens. Consequently, the Coulombic efficiency (CE) increased: 57% for 0.02 g of FAN/L of fed-MEC, compared to 7696 for 0.18 g of FAN/L of fed-MECs and 6296 for 037 g of FAN/L of fed-MECs. Increasing the FAN concentration was associated with the accumulation of higher organic acids (e.g., lactate, iso-butyrate, and propionate), which was accompanied by increasing relative abundances of phylotypes that are most closely related to anode respiration (Geobacteraceae), lactic-acid production (Lactobacillales), and syntrophic acetate oxidation (Clostridiaceae). Thus, the microbial community established syntrophic relationships among glucose fermenters, acetogens, and anode-respiring bacteria (ARB). The archaeal population of the MEC fed 0.02 g FAN/L was dominated by Methanobacterium, but 0.18 and 0.37 g FAN/L led to Methanobrevibacter becoming the most abundant species. Our results provide insight into a way to decrease CH_4 production and increase CE using FAN to control the fermentation step, instead of inhibiting methanogens using expensive or toxic chemical inhibitors, such as 2-bromoethanesulfonic acid.
机译:当向混合培养微生物电解池(MEC)注入可发酵的底物(例如葡萄糖)时,底物的很大一部分电子通过氢营养甲烷化作用而最终生成甲烷(CH_4),这是不希望的。在这里,我们显示了游离氨氮(FAN,它是NH_3)改变了批量MEC中的葡萄糖发酵途径,从而使氢营养型甲基原的“燃料” H_2的产生最小化。因此,库仑效率(CE)提高了:0.02 g的FAN / L的MEC的库仑效率为57%,而0.18 g的FAN / L的MEC的库尼效率为7696,037g的FAN / L的MEC的库仑比效率为6296。 MEC。 FAN浓度的增加与高级有机酸(例如,乳酸,异丁酸和丙酸)的积累有关,这伴随着与阳极呼吸(地杆菌科),乳酸最密切相关的系统型相对丰度的增加。生产(乳酸杆菌),和醋酸同养氧化(梭菌)。因此,微生物群落在葡萄糖发酵罐,产乙酸菌和阳极呼吸细菌(ARB)之间建立了同养关系。饲喂0.02 g FAN / L的MEC的古细菌种群以甲烷杆菌为主导,但是0.18和0.37 g FAN / L导致甲烷杆菌成为最丰富的物种。我们的结果提供了一种探索方法,可使用FAN控制发酵步骤来降低CH_4产量并提高CE,而不是使用昂贵或有毒的化学抑制剂(例如2-溴乙烷磺酸)抑制产甲烷菌。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第22期|13461-13470|共10页
  • 作者单位

    Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287, United States ,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States ,Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt;

    Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287, United States ,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States;

    Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, Arizona 85287, United States ,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:57:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号