首页> 外文期刊>Environmental Science & Technology >Unravelling and Reconstructing the Nexus of Salinity, Electricity, and Microbial Ecology for Bioelectrochemical Desalination
【24h】

Unravelling and Reconstructing the Nexus of Salinity, Electricity, and Microbial Ecology for Bioelectrochemical Desalination

机译:揭示和重建生物电化学脱盐的盐度,电和微生物生态学联系

获取原文
获取原文并翻译 | 示例
       

摘要

Microbial desalination cells (MDCs) are an emerging concept for simultaneous water/wastewater treatment and energy recovery. The key to developing MDCs is to understand fundamental problems, such as the effects of salinity on system performance and the role of microbial community and functional dynamics. Herein, a tubular MDC was operated under a wide range of salt concentrations (0.05—4 M), and the salinity effects were comprehensively examined. The MDC generated higher current with higher salt concentrations in the desalination chamber. When fed with 4 M NaCI, the MDC achieve a current density of 300 A m~(-3) (anode volume), which was one of the highest among bioelectrochemical system studies. Community analysis and electrochemical measurements suggested that electrochemically active bacteria Pseudomonas and Acinetobacter transferred electrons extracellularly via electron shuttles, and the consequent ion migration led to high anode salinities and conductivity that favored their dominance. Predictive functional dynamics and Bayesian networks implied that the taxa putatively not capable of extracellular electron transfer (e.g., Bacteroidales and Clostridiales) might indirectly contribute to bioelectrochemical desalination. By integrating the Bayesian network with logistic regression, current production was successfully predicted from taxonomic data. This study has demonstrated uncompromised system performance under high salinity and thus has highlighted the potential of MDCs as an energy-efficient technology to address water-energy challenges. The statistical modeling approach developed in this study represents a significant step toward understating microbial communities and predicting system performance in engineered biological systems.
机译:微生物脱盐池(MDC)是同时进行水/废水处理和能量回收的新兴概念。开发MDC的关键是了解基本问题,例如盐度对系统性能的影响以及微生物群落和功能动力学的作用。在此,管状MDC在宽范围的盐浓度(0.05-4 M)下运行,并全面检查了盐度影响。 MDC在脱盐室中产生的电流更高,盐浓度更高。当加入4 M NaCl时,MDC达到300 A m〜(-3)(阳极体积)的电流密度,这是生物电化学系统研究中最高的电流密度之一。群落分析和电化学测量表明,电化学活性细菌假单胞菌和不动杆菌通过电子穿梭将电子转移到细胞外,随后的离子迁移导致较高的阳极盐度和电导率,有利于它们的主导地位。预测的功能动力学和贝叶斯网络暗示可能无法进行细胞外电子转移的类群(例如,拟杆菌属和梭状芽胞杆菌)可能间接地促进了生物电化学脱盐。通过将贝叶斯网络与逻辑回归相集成,可以从分类学数据成功预测当前产量。这项研究表明,在高盐度下系统性能不受影响,因此强调了MDC作为解决水能挑战的节能技术的潜力。在这项研究中开发的统计建模方法代表了低估微生物群落和预测工程生物系统中系统性能的重要一步。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第21期|12672-12682|共11页
  • 作者单位

    Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States;

    Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States;

    Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar;

    Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States;

    Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:58:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号