首页> 外文期刊>Environmental Science & Technology >Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat
【24h】

Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat

机译:低品位热量热渗透能量转化的能效和性能限制效应

获取原文
获取原文并翻译 | 示例
       

摘要

Low-grade heat energy from sources below 100 ℃ is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 ℃, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m~2) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.
机译:来自世界各地的100℃以下热源的低品位热能大量使用,但是由于热量输出的变化以及热源与环境之间的温差很小,因此无法使用现有技术有效地转化为电能。最近开发的热渗透能量转换(TOEC)工艺具有潜力,可以利用温度差在薄膜上产生加压的液体通量,从而从低级热源中收集能量,然后可以通过涡轮将其转换为机械功。在这项研究中,我们对能源效率和TOEC技术的预期性能进行了首次分析,重点是利用疏水性多孔气隙膜和水作为工作流体的系统。我们首先开发一个框架来分析过程中实际的传热和传热,探索各种膜参数和系统运行条件的影响。我们的分析表明,优化的系统在热和冷工作温度分别为60和20℃,工作压力为5 MPa时,可实现高达4.1%(卡诺效率的34%)的热电能量转换效率(50巴)。但是,在以高功率密度(> 5 W / m〜2)和有限尺寸的热交换器运行的系统中,将会出现较低的能源效率。我们发现,实现高性能最重要的膜性能是不对称的孔结构,高耐压性,高孔隙率和30至100μm的厚度。我们还量化了利用脱气水流,膜组件中强大的流体动力混合以及高热交换器效率所带来的性能优势。总体而言,我们的研究证明了全尺寸TOEC系统从低等级热量中提取能量的希望,并确定了性能优化的关键因素。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第21期|12925-12937|共13页
  • 作者单位

    Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208286, New Haven, Connecticut 06520-8286, United States;

    Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208286, New Haven, Connecticut 06520-8286, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:57:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号