首页> 外文期刊>Environmental Science & Technology >Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation
【24h】

Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation

机译:聚电解质渗透电极增强电容去离子性能:理论与实验验证

获取原文
获取原文并翻译 | 示例
       

摘要

The energy efficiency of capacitive deionization (CDI) with porous carbon electrodes is limited by the high ionic resistance of the macropores in the electrodes. In this study, we demonstrate a facile approach to improve the energy efficiency by filling the macropores with ion-conductive polyelectrolytes, which is termed polyelectrolyte-infiltrated CDI (pie-CDI or πCDI). In πCDI, the filled polyelectrolyte effectively turns the macropores into a charged ion-selective layer and thus increases the conductivity of macropores. We show experimentally that πCDI can save up to half of the energy consumption compared to membrane CDI, achieving identical desalination during the charging step. The energy consumption can be even lower if the process is operated at a smaller average salt adsorption rate. Further energy breakdown analysis based on a theoretical model confirms that the improved energy efficiency is largely attributed to the increased conductivity in the macropores.
机译:多孔碳电极的电容性去离子(CDI)的能量效率受到电极中大孔的高离子电阻的限制。在这项研究中,我们展示了一种通过将离子导电性聚电解质填充到大孔中来提高能量效率的简便方法,这种电解质被称为聚电解质渗透CDI(pie-CDI或πCDI)。在πCDI中,填充的聚电解质有效地将大孔转变为带电的离子选择层,从而提高了大孔的电导率。我们通过实验表明,与膜CDI相比,πCDI最多可以节省一半的能耗,在充电步骤中实现相同的脱盐效果。如果该方法在较小的平均盐吸附速率下运行,则能耗甚至更低。基于理论模型的进一步的能量击穿分析证实,提高的能量效率主要归因于大孔中电导率的增加。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第9期|5874-5883|共10页
  • 作者

    Li Wang; Yuanzhe Liang; Li Zhang;

  • 作者单位

    Department of Civil and Environmental Engineering Vanderbilt University Nashville Tennessee 37235-1831 United States;

    Wetsus European Centre of Excellence for Sustainable Water Technology 8911 MA Leeuwarden The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:27:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号