首页> 外文期刊>Environmental Science & Technology >Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis
【24h】

Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis

机译:独立式氧化石墨烯膜对正向渗透的输运机理研究

获取原文
获取原文并翻译 | 示例
       

摘要

Graphene oxide membranes (GOMs) are promising separation technologies. In forward osmosis (FO), we found that the water flux from the feed solution to the draw solution can prevent ions from diffusing to the feed solution in a highly tortuous and porous GOM. In reverse osmosis (RO), we found that the salt rejection is low compared to that in commercially available RO membranes. While this prohibits the use of GOMs for RO and FO water desalination, we believe that such membranes could be used for other water treatment applications and energy production. To examine the transport mechanism, we characterized the physical and chemical properties of GOMs and derived mass transfer models to analyze water and salt transport inside freestanding GOMs. The experimental reverse salt flux was between the largest and smallest theoretical values, which corresponds to the lowest and highest tortuosity, respectively, in FO. Furthermore, the concentration profile for the reverse salt flux shortened as the NaCl draw concentration increased because the water flux increased and the electrical double layer (EDL) decreased with increasing NaCl in the draw solution. We provide insights into the transport mechanisms in GOMs and provide guidance for future exploration of GOMs in efficient water treatment and energy production processes.
机译:氧化石墨烯膜(GOM)是有前途的分离技术。在正向渗透(FO)中,我们发现从进料溶液到汲取溶液的水通量可以防止离子在高度曲折且多孔的GOM中扩散到进料溶液。在反渗透(RO)中,我们发现与市售的RO膜相比,盐截留率较低。尽管这禁止将GOM用于RO和FO水脱盐,但我们认为此类膜可用于其他水处理应用和能源生产。为了检查传输机制,我们表征了GOM的物理和化学性质,并推导了传质模型以分析独立式GOM内部的水和盐分传输。实验的逆盐通量在理论值的最大值和最小值之间,分别对应于FO中的最低和最高曲折度。此外,随着NaCl抽提液浓度的增加,反盐通量的浓度分布会缩短,这是因为随着抽提液中NaCl的增加,水通量增加,电双层(EDL)降低。我们提供有关GOM中传输机制的见解,并为将来在高效水处理和能源生产过程中探索GOM提供指导。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第9期|5802-5812|共11页
  • 作者单位

    School of Civil and Environmental Engineering and Brook Byers Institute for Sustainable Systems Georgia Institute of Technology Atlanta Georgia 30308 United States;

    School of Metallurgy and Environment Central South University Changsha 410083 China;

    Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control Department of Environmental Science and Engineering North China Electric Power University Baoding 071003 China;

    School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta Georgia 30308 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:27:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号