首页> 外文期刊>Environmental Pollution >Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material
【24h】

Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material

机译:表面活性剂和聚合物稳定的工程银纳米颗粒在以硅酸盐为主的含水层材料中的运输和保留

获取原文
获取原文并翻译 | 示例
       

摘要

Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer media with varying content of material 0.063 mm in diameter (silt and clay fraction), background solution chemistry, and flow velocity. Breakthrough curves for Ag-ENPs exhibited blocking behavior that frequently produced a delay in arrival time in comparison to a conservative tracer that was dependent on the physicochemical conditions, and then a rapid increase in the effluent concentration of Ag-ENPs. This breakthrough behavior was accurately described using one or two irreversible retention sites that accounted for Langmuirian blocking on one site. Simulated values for the total retention rate coefficient and the maximum solid phase concentration of Ag-ENPs increased with increasing solution ionic strength, cation valence, clay and silt content, decreasing flow velocity, and for polymer-instead of surfactant-stabilized Ag-ENPs. Increased Ag-ENP retention with ionic strength occurred because of compression of the double layer and lower magnitudes in the zeta potential, whereas lower velocities increased the residence time and decreased the hydrodynamics forces. Enhanced Ag-ENP interactions with cation valence and clay were attributed to the creation of cation bridging in the presence of Ca2+ . The delay in breakthrough was always more pronounced for polymer-than surfactant-stabilized Ag-ENPs, because of differences in the properties of the stabilizing agents and the magnitude of their zeta-potential was lower. Our results clearly indicate that the long-term transport behavior of Ag-ENPs in natural, silicate dominated aquifer material will be strongly dependent on blocking behavior that changes with the physicochemical conditions and enhanced Ag-ENP transport may occur when retention sites are filled. (C) 2018 Elsevier Ltd. All rights reserved.
机译:进行填充柱实验以研究表面活性剂和聚合物稳定的工程化银纳米颗粒(Ag-ENPs)在饱和天然含水层介质中的传输和封闭行为,该介质的不同含量的物质直径小于0.063 mm(淤泥和粘土分数),本底溶液化学和流速。与依赖于物理化学条件的保守示踪剂相比,Ag-ENP的穿透曲线表现出阻塞行为,该行为经常导致到达时间的延迟,然后迅速增加Ag-ENPs的出水浓度。使用一个或两个不可逆的保留位点准确地描述了这种突破行为,这是一个位点上郎格米尔阻塞的原因。 Ag-ENPs的总保留速率系数和最大固相浓度的模拟值随着溶液离子强度,阳离子化合价,粘土和淤泥含量的增加,流速的降低以及聚合物而不是表面活性剂稳定的Ag-ENPs的增加而增加。由于双层的压缩和zeta电位的降低,发生了具有离子强度的增加的Ag-ENP保留,而较低的速度则增加了停留时间并降低了流体动力。与阳离子化合价和粘土的增强的Ag-ENP相互作用归因于在Ca2 +存在下阳离子桥接的产生。与聚合物表面活性剂稳定的Ag-ENP相比,突破的延迟总是更加明显,因为稳定剂的性质有所不同,并且其Zeta电位的幅度较低。我们的结果清楚地表明,在天然的,以硅酸盐为主的含水层材料中,Ag-ENPs的长期运输行为将强烈依赖于随物理化学条件而变化的封闭行为,并且当填充保留位时,可能会增强Ag-ENP的运输。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号