首页> 外文期刊>Environmental Engineering Science >Reactive Transport Simulation of Fracture Channelization and Transmissivity Evolution
【24h】

Reactive Transport Simulation of Fracture Channelization and Transmissivity Evolution

机译:裂缝信道化和透射率进化的无功仿真

获取原文
获取原文并翻译 | 示例
       

摘要

Underground fractures serve as flow conduits, and they may produce unwanted migration of water and other fluids in the subsurface. An example is the migration and leakage of greenhouse gases in the context of geologic carbon sequestration. This study has generated new understanding about how acids erode carbonate fracture surfaces and the positive feedback between reaction and flow. A two-dimensional reactive transport model was developed and used to investigate the extent to which geochemical factors influence fracture permeability and transmissivity evolution in carbonate rocks. The only mineral modeled as reactive is calcite, a fast-reacting mineral that is abundant in subsurface formations. The X-ray computed tomography dataset from a previous experimental study of fractured cores exposed to carbonic acid served as a testbed to benchmark the model simulation results. The model was able to capture not only erosion of fracture surfaces but also the specific phenomenon of channelization, which produces accelerating transmissivity increase. Results corroborated experimental findings that higher reactivity of the influent solution leads to strong channelization without substantial mineral dissolution. Simulations using mineral maps of calcite in a specimen of Amherstburg limestone demonstrated that mineral heterogeneity can either facilitate or suppress the development of flow channels depending on the spatial patterns of reactive mineral. In these cases, fracture transmissivity may increase rapidly, increase slowly, or stay constant, and for all these possibilities, the calcite mineral continues to dissolve. Collectively, these results illustrate that fluid chemistry and mineral spatial patterns need to be considered in predictions of reaction-induced fracture alteration and risks of fluid migration.
机译:地下骨折用作流动导管,并且它们可能在地下产生不需要的水和其他液体的迁移。一个例子是在地质碳封存的背景下温室气体的迁移和泄漏。该研究产生了关于酸侵蚀碳酸盐裂缝表面和反应和流动之间的正反馈的新了解。开发了一种二维反应性传输模型,并用于研究地球化学因素影响碳酸盐岩中骨折渗透率和透射率进化的程度。唯一用作反应性的矿物质是方解石,一种快速反应的矿物质在地下地层中丰富。 X射线计算机断层扫描数据集从先前的裂缝芯的实验研究,暴露于碳酸作为测试平台,以基准模拟仿真结果。该模型不仅能够捕获骨折表面的侵蚀,而且捕获裂缝表面的特定现象,其产生加速透射率增加。结果腐败的实验结果表明,流入溶液的较高反应性导致强通道化而无实质性矿物溶解。在Amherstburg石灰岩标本中使用方解石矿质地图的模拟表明,根据反应性矿物的空间模式,矿物异质性可以促进或抑制流动通道的开发。在这些情况下,骨折透射率可能会迅速增加,缓慢增加,或保持恒定,并且对于所有这些可能性,方解石矿物质继续溶解。总的来说,这些结果说明了在反应诱导的断裂改变和流体迁移风险的预测中考虑流体化学和矿泉空间模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号