首页> 外文期刊>Engineering Structures >Substructural and progressive structural identification methods
【24h】

Substructural and progressive structural identification methods

机译:亚结构和渐进结构识别方法

获取原文
获取原文并翻译 | 示例

摘要

While it is possible in principle to determine unknown structural parameters by system identification techniques, a major challenge lies in the numerical difficulty in obtaining reasonably accurate results when the system size is large. Adopting the strategy of "divide-and-conquer" to address this issue, substructural identification and progressive structural identification methods are formulated. The main idea is to divide the structure into substructures such that the number of unknown parameters is within manageable size in each stage of identification. A non-classical approach of genetic algorithms is employed as the search tool for its several advantages including ease of implementation and desirable characteristics of global search. Numerical simulation study is presented, including a fairly large system of 50 degrees of freedom, to illustrate the identification accuracy and efficiency. The methods are tested for known-mass and unknown-mass systems with up to 102 unknown parameters, accounting for the effects of incomplete and noisy measurements.
机译:虽然原则上可以通过系统识别技术确定未知的结构参数,但主要挑战在于,当系统规模较大时,难以获得合理准确的结果在数值上存在困难。采取“分而治之”的策略来解决这一问题,提出了子结构识别和渐进结构识别方法。主要思想是将结构划分为子结构,以便在识别的每个阶段中,未知参数的数量都在可管理的范围内。遗传算法的非经典方法被用作搜索工具,因为它具有几个优点,包括易于实现和全局搜索的理想特性。提出了数值模拟研究,包括一个相当大的50个自由度的系统,以说明识别的准确性和效率。该方法针对已知质量和未知质量系统进行了测试,该系统具有多达102个未知参数,这说明了测量不完整和噪声的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号