首页> 外文期刊>Engineering Structures >Statistical pattern recognition approach for long-time monitoring of the G.Meazza stadium by means of AR models and PCA
【24h】

Statistical pattern recognition approach for long-time monitoring of the G.Meazza stadium by means of AR models and PCA

机译:统计模型识别方法,用于通过AR模型和PCA长期监控G.Meazza体育场

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the interest for the automatic evaluation of the state of civil structures is increased. The development of Structural Health Monitoring is allowed by the low costs of the hardware and the improving of the computational capacity of computers that can analyze considerable amount of data in short time. A Structural Health Monitoring (SHM) system should continuously monitor structures, extracting and processing relevant information, to efficiently allocate the resources for maintenance and ensure the security of the structure. Considering the latest developments in this field, great attention has been paid to data-based approaches, especially to autoregressive models; these econometric models, born in the field of finance, are usually used to analyze the vibration time series provided by the sensors applied on the monitored structures. Indexes based on these autoregressive models can be used as features by which the structural integrity can be assessed. This work proposes the application of a multivariable analysis, Principal Component Analysis (PCA), to the set of the autoregressive model parameters estimated on the vibration responses of a real structure under operational conditions. This approach reduces a complex set of data to a lower dimension, by representing the behavior of the structure through the few variables. This work uses the principal components of the autoregressive model parameters as indicators that can effectively describe different operational levels and some important environmental effects. The strategy is applied for the first time on the data collected by the long-time monitoring system installed on the stands of the G. Meazza stadium in Milan. The results will show that this procedure is effective in representing the status of the structure and can be used in a structural health monitoring prospective.
机译:近年来,对土木结构状态的自动评估的兴趣增加了。结构健康监测的发展是由于硬件的低成本以及可以在短时间内分析大量数据的计算机的计算能力的提高而允许的。结构健康监视(SHM)系统应连续监视结构,提取和处理相关信息,以有效分配维护资源并确保结构的安全性。考虑到该领域的最新发展,已经非常重视基于数据的方法,尤其是自回归模型。这些计量经济学模型,起源于金融领域,通常用于分析由受监控结构上应用的传感器提供的振动时间序列。基于这些自回归模型的索引可以用作评估结构完整性的特征。这项工作提出将多变量分析,主成分分析(PCA)应用于在操作条件下根据真实结构的振动响应估算的自回归模型参数集。这种方法通过使用少量变量表示结构的行为,从而将复杂的数据集降低到较低的维度。这项工作使用自回归模型参数的主要成分作为指标,可以有效地描述不同的运行水平和一些重要的环境影响。该策略首次应用于安装在米兰G. Meazza体育场看台上的长期监控系统收集的数据。结果将表明,该程序可有效地表示结构的状态,并可用于结构健康监测的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号