...
首页> 外文期刊>Engineering Structures >Comparison of experimental testing and finite element modelling of a replica of a section of the Vasa warship to identify the behaviour of structural joints
【24h】

Comparison of experimental testing and finite element modelling of a replica of a section of the Vasa warship to identify the behaviour of structural joints

机译:比较Vasa战舰的一部分的实验测试和有限元建模,以识别结构性接头的行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Modelling in design of new support systems necessitates the joint stiffness of the existing wooden structures. In valuable structures, e.g. in cultural heritage, or structures with inaccessible joints, these stiffness values must be estimated, e.g. by testing joints in tailored replicas of the original parts. Although a simplified structure, the replica, can call for finite element (FE) modelling to capture the stiffness parameters. The first step in such a process is to compare FE predictions with experimental tests, for validation purposes. The reasons for unavoidable differences in load-displacement behaviour between model predictions and experimental test should be identified, and then possibly remedied by an improved model. Underlying causes like the complex shape of joints, geometrical uncertainties, contact mechanisms and material nonlinearity are generally too computationally expensive to be included in a full-scale model. It is therefore convenient to collect such effects in the contact penalty stiffness in the joint contact areas where stresses are high, which influences the resulting joint stiffness. A procedure for this is here illustrated for the case of the 17th century Vasa shipwreck A replica of a section of the ship has been constructed, and its joints were tested in bending-compression, in-plane shear and rotation. The FE simulations showed stiffer behaviour than the experimental results. Therefore, a normal penalty stiffness in contact surfaces of the joint were introduced, and used as a calibration parameter to account for the simplifying assumptions or indeliberate imprecision in the model, e.g. concerning boundary conditions, material properties and geometrical detail. The difference between numerical predictions and experimental results could then be significantly reduced, with a suitable normal penalty stiffness value. Once an acceptable finite element model has been obtained, it is shown how this can be used to identify stiffness values for joints in the physical structure with compensation for degradation of material properties due to aging and conservation treatment. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在新的支撑系统的设计中建模需要现有木结构的关节刚度。在有价值的结构中,例如在文化遗产或关节不通的结构中,必须估算这些刚度值,例如通过在原始零件的定制副本中测试接头。尽管是简化结构,但复制品可以要求使用有限元(FE)建模来捕获刚度参数。为了验证的目的,此过程的第一步是将有限元预测与实验测试进行比较。应该确定模型预测和实验测试之间不可避免的载荷-位移行为差异的原因,然后可能通过改进的模型来弥补。诸如复杂的接头形状,几何不确定性,接触机制和材料非线性之类的潜在原因通常在计算上过于昂贵,无法包含在完整模型中。因此,在应力高的关节接触区域中,在接触惩罚刚度中收集这样的影响是很方便的,这会影响最终的关节刚度。此处以17世纪瓦萨海难的情况为例进行说明。已建造了该船一部分的复制品,并对其接头进行了弯曲压缩,平面剪切和旋转测试。有限元仿真显示出比实验结果更严格的行为。因此,引入了关节接触表面的法向刚度刚度,并将其用作校准参数以说明模型中的简化假设或故意的不精确性,例如模型。有关边界条件,材料属性和几何细节的信息。数值预测和实验结果之间的差异可以通过适当的法向刚度刚度值显着减小。一旦获得了可接受的有限元模型,就会说明如何使用该模型来识别物理结构中接头的刚度值,并补偿由于老化和防腐处理而导致的材料性能下降。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Engineering Structures》 |2017年第15期|62-76|共15页
  • 作者单位

    Uppsala Univ, Div Appl Mech, Dept Engn Sci, S-75121 Uppsala, Sweden;

    Uppsala Univ, Div Appl Mech, Dept Engn Sci, S-75121 Uppsala, Sweden;

    Uppsala Univ, Div Appl Mech, Dept Engn Sci, S-75121 Uppsala, Sweden;

    Uppsala Univ, Div Appl Mech, Dept Engn Sci, S-75121 Uppsala, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号