首页> 外文期刊>Engineering Structures >A new approach to determine strength of Perfobond rib shear connector in steel-concrete composite structures by employing neural network
【24h】

A new approach to determine strength of Perfobond rib shear connector in steel-concrete composite structures by employing neural network

机译:神经网络确定钢-混凝土组合结构中Perfobond肋骨剪力连接件强度的新方法

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this study is to introduce a novel numerical approach, based on Artificial Neural Network (ANN), to predict the shear strength of Perfobond rib shear connector (PRSC). For this purpose, 90 records were extracted from the literature and were used to develop a number of Bayesian neural network models for predicting the shear strength of PRSC. An accurate ANN model was attained with a high value of correlation coefficient for the train and test subsets. Having a reliable ANN, a parametric study on the shear strength of PRSC was carried out to establish the trend of main contributing factors. The majority of assumptions, considered by empirical equations, were predicted by the developed ANN. Moreover, a sensitivity analysis of input variables was conducted; the outcomes revealed that the area of concrete dowels had the strongest influence on the shear strength of PRSC. Eventually, using the validated ANN, an abundant number of curves (Master Curves) were generated to introduce a user-friendly equation. According to the results, both the ANN model and the proposed equation reflect a higher accuracy than other existing empirical equations.
机译:这项研究的主要目的是介绍一种基于人工神经网络(ANN)的新型数值方法,以预测Perfobond肋骨剪切连接器(PRSC)的剪切强度。为此,从文献中提取了90条记录,并用于建立许多贝叶斯神经网络模型来预测PRSC的剪切强度。对于火车和测试子集,获得了具有高相关系数值的准确的ANN模型。为了获得可靠的人工神经网络,对PRSC的剪切强度进行了参数研究,以确定主要影响因素的趋势。经验公式考虑的大多数假设都是由发达的人工神经网络预测的。此外,对输入变量进行了敏感性分析。结果表明,混凝土销钉的面积对PRSC的抗剪强度影响最大。最终,使用经过验证的人工神经网络,生成了大量曲线(主曲线)以引入用户友好的方程式。根据结果​​,与其他现有的经验方程相比,人工神经网络模型和所提出的方程均反映出更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号