首页> 外文期刊>Engineering Structures >Predication of the residual axial load capacity of CFRP-strengthened RC column subjected to blast loading using artificial neural network
【24h】

Predication of the residual axial load capacity of CFRP-strengthened RC column subjected to blast loading using artificial neural network

机译:使用人工神经网络对CFRP加强RC柱的残留轴向承载能力的预测

获取原文
获取原文并翻译 | 示例

摘要

In this study, two genetic algorithm optimized backpropagation neural networks (GA-BPNN) were established to predict the ratio of residual axial load capacity to the maximum axial load capacity (referred to as RCI hereafter) of the non- and CFRP-strengthened RC columns based on a huge amount of simulation data. The first one can be used to predict the residual axial load capacity of the damaged non- and CFRP-strengthened RC columns induced by blast load with the input of several parameters including column dimensions, concrete strength, transverse reinforcement ratio, longitudinal reinforcement ratio, axial load ratio, CFRP stiffness, carbon fiber strength, peak pressure and impulse of the blast load. Therefore it can be used for the blast-resistant design of non- and CFRPstrengthened RC columns. The input variables of the second GA-BPNN were changed to be the ratio of residual mid-height deflection to the column height after the explosion, column dimensions, concrete strength, transverse reinforcement ratio, longitudinal reinforcement ratio, CFRP stiffness and carbon fiber strength. Since the input variables of the second GA-BPNN could be easily derived after the explosion, thus it could be used for the rapid damage assessment of RC columns. Damage assessments for three non- and CFRP-strengthened columns were also conducted using the first GA-BPNN.
机译:在本研究中,建立了两个遗传算法优化的反向衰减神经网络(GA-BPNN),以预测非 - 和CFRP加强的RC柱的最大轴向承载能力与最大轴向载荷容量(以下称为RCI)的比率基于大量的模拟数据。第一个可以用来预测由鼓声载荷引起的损坏的非和CFRP增强的RC柱的残留轴向承载能力,其中包括柱尺寸,混凝土强度,横向加强比,纵向加强率,轴向,轴向负荷比,CFRP刚度,碳纤维强度,峰值压力和爆破载荷的脉冲。因此,它可用于非和CFRPstrenttented的RC柱的抗爆炸设计。第二GA-BPNN的输入变量被改变为爆炸,柱尺寸,混凝土强度,横向加强比,纵向增强率,CFRP刚度和碳纤维强度之后的剩余中高偏转与柱高的比率。由于爆炸后可以容易地衍生第二GA-BPNN的输入变量,因此它可用于RC列的快速损伤评估。还使用第一个GA-BPNN进行三个非和CFRP加强柱的损伤评估。

著录项

  • 来源
    《Engineering Structures》 |2021年第1期|112519.1-112519.15|共15页
  • 作者单位

    Tianjin Univ Key Lab Coast Civil Struct Safety Minist Educ Tianjin 300350 Peoples R China;

    Tianjin Univ Sch Civil Engn Tianjin 300350 Peoples R China|Tianjin Chengjian Univ Tianjin Key Lab Civil Struct Protect & Reinforcem Tianjin 300384 Peoples R China;

    Tianjin Univ Key Lab Coast Civil Struct Safety Minist Educ Tianjin 300350 Peoples R China;

    Univ Technol Sydney Sch Civil & Environm Engn Sydney NSW 2007 Australia|Tianjin Chengjian Univ Tianjin Key Lab Civil Struct Protect & Reinforcem Tianjin 300384 Peoples R China;

    Univ Technol Sydney Sch Civil & Environm Engn Sydney NSW 2007 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CFRP-strengthened RC column; Blast loading; Residual axial load capacity; Genetic algorithm; Backpropagation neural network;

    机译:CFRP加强的RC色谱柱;爆炸载荷;残留轴向载荷能力;遗传算法;BackProjagation神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号