...
首页> 外文期刊>Engineering Structures >Multiscale fatigue damage evolution in orthotropic steel deck of cable-stayed bridges
【24h】

Multiscale fatigue damage evolution in orthotropic steel deck of cable-stayed bridges

机译:斜拉桥正交钢甲板的多尺度疲劳损伤演化

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates multiscale fatigue damage evolution in deck-to-rib (DTR) joints of orthotropic steel deck (OSD) of a long-span cable-stayed steel bridge under traffic loading with consideration of micro short crack nucleation and growth as well as macro long crack propagation. Multiscale finite element modelling and substructure techniques are jointly used to model a long-span cable-stayed bridge and simulate multiscale fatigue damage evolution in DTR joints. The polycrystal microstructure together with the crystal plastic constitutive model are used to model the fine-grained heat-affected zone of a DTR, in which micro short crack nucleation and growth are simulated considering the randomness of grain size and orientation. The polycrystal microstructure is embedded in a substructure while the substructure is coupled with the multiscale model of the bridge under traffic loading. After the micro short crack in the microstructure grows up to an initial long crack length, threedimensional macro long crack propagation is simulated in the substructure including the effect of mixed crack modes by fracture mechanics. As a case study, the multiscale fatigue damage evolution in the DTR of the OSD of the Stonecutters cable-stayed bridge in Hong Kong under moving vehicles is simulated using the proposed method. The simulation results indicate that the proposed multiscale fatigue damage evolution model can describe the entire damage process from micro crack nucleation to macro crack propagation. The case study shows that the macro crack propagates rapidly from the initial macro crack and the period of micro short crack nucleation and growth is longer than the macro crack propagation period.
机译:本文通过考虑到微量短裂纹成核和生长以及宏观以及宏观,研究了在交通载量下的数尺寸钢甲板(OSD)的甲板上(DTR)接头中的多尺度疲劳损伤演化长裂纹传播。多尺度有限元建模和子结构技术共同用来建模长跨度斜拉桥,并模拟DTR接头的多尺度疲劳损伤演化。与晶体塑料组成型模型一起使用多晶微观结构用于模拟DTR的细粒度热影响区域,其中考虑到晶粒尺寸和取向的随机性模拟了微裂纹成核和生长。多晶微观结构嵌入在子结构中,而下部结构与交通负载下的桥梁的多尺度模型耦合。在微观结构中的微短裂纹变化到初始长裂缝长度之后,在子结构中模拟三维宏观裂纹传播,包括裂缝力学的混合裂纹模式的效果。作为一个案例研究,使用该方法模拟了在移动车辆下的Stonecutters斜拉桥OSD OSD的DTR的多尺度疲劳损伤演变。仿真结果表明,所提出的多尺度疲劳损伤演化模型可以将微裂纹成核的整个损伤过程描述为宏观裂纹传播。案例研究表明,宏观裂纹从初始宏观裂缝迅速传播,微小裂纹成核和生长的时间长于宏观裂纹传播期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号