首页> 外文期刊>Engineering Structures >Development of a novel approach for strain demand prediction of pipes at fault crossings on the basis of multi-layer neural network driven by strain data
【24h】

Development of a novel approach for strain demand prediction of pipes at fault crossings on the basis of multi-layer neural network driven by strain data

机译:基于应变数据驱动的多层神经网络的故障交叉管道应变需求预测新方法

获取原文
获取原文并翻译 | 示例

摘要

The active fault is one of the commonest geological disasters in the pipeline construction. Excessive tensile or compressive strain may be induced in pipelines which may lead to the rupture or buckling when the two fault plates generate relative movement on the fault plane so that the pipeline cannot operate normally. In this study, a finite element model of pipelines subjected to fault displacements has been established for obtaining the database of strain demand which contains the prospective engineering conditions by considering the influencing factors, i.e. pipe geometrical parameters, internal pressure, fault parameters, and soil parameters. This process has been conducted by an effective hybrid methodology which can integrate the function of .inp documents generation, automatic calculation, and results extraction based on the technology of Python, Abaqus batch processing, and Matlab. The database can be utilized as training data in the multi-layer neural network for developing the strain demand prediction model which shows accurate results with high efficiency compared with general finite element methods.
机译:积极的故障是管道建设中最常见的地质灾害之一。当两个故障板在故障平面上产生相对运动时,可以在管道中引起过度拉伸或压缩应变,这可能导致破裂或弯曲,使得管道不能正常运行。在本研究中,已经建立了经受故障位移的有限元模型,以获得通过考虑影响因素,即管道几何参数,内部压力,故障参数和土壤参数来获得含有预期工程条件的应变需求数据库。该过程是通过一种有效的混合方法进行的,这可以基于Python,ABAQUS批处理和MATLAB的技术集成.INP文件生成,自动计算和结果提取的功能。该数据库可以用作多层神经网络中的训练数据,用于开发应变需求预测模型,其与一般有限元方法相比具有高效率的准确结果。

著录项

  • 来源
    《Engineering Structures》 |2020年第jul1期|110685.1-110685.9|共9页
  • 作者单位

    China Univ Petr Beijing Key Lab Urban Oil & Gas Distribut Technol MOE Key Lab Petr Engn Natl Engn Lab Pipeline Safety Beijing 102249 Peoples R China;

    China Univ Petr Beijing Key Lab Urban Oil & Gas Distribut Technol MOE Key Lab Petr Engn Natl Engn Lab Pipeline Safety Beijing 102249 Peoples R China|Univ Alberta Dept Civil & Environm Engn Edmonton AB T6G 2W2 Canada;

    China Univ Petr Beijing Key Lab Urban Oil & Gas Distribut Technol MOE Key Lab Petr Engn Natl Engn Lab Pipeline Safety Beijing 102249 Peoples R China;

    China Univ Petr Beijing Key Lab Urban Oil & Gas Distribut Technol MOE Key Lab Petr Engn Natl Engn Lab Pipeline Safety Beijing 102249 Peoples R China;

    China Univ Petr Beijing Key Lab Urban Oil & Gas Distribut Technol MOE Key Lab Petr Engn Natl Engn Lab Pipeline Safety Beijing 102249 Peoples R China;

    China Univ Petr Beijing Key Lab Urban Oil & Gas Distribut Technol MOE Key Lab Petr Engn Natl Engn Lab Pipeline Safety Beijing 102249 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    X80 pipeline; Active fault; Finite element model; Data generation; Strain prediction; Multi-layer BP neural network;

    机译:X80管道;活性断层;有限元模型;数据生成;应变预测;多层BP神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号