首页> 外文期刊>Engineering Structures >Time-varying system identification by enhanced Empirical Wavelet Transform based on Synchroextracting Transform
【24h】

Time-varying system identification by enhanced Empirical Wavelet Transform based on Synchroextracting Transform

机译:基于同步提出变换的增强经验小波变换,时变系统识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an enhanced Empirical Wavelet Transform (EWT) approach based on Synchroextracting Transform (SET) is proposed for time-varying system identification. When a structure of time-varying physical properties, i.e. mass, stiffness or damping, is under external excitations, structural dynamic responses are usually non stationary because the system has time-varying dynamic vibration characteristics. Under this circumstance, it would be difficult to determine the number of Intrinsic Mode Functions (IMFs) included in structural dynamic responses by using Fourier spectrum. Considering that the filtering boundaries of traditional EWT method are defined based on the segmental Fourier Spectrum of a processed signal, directly using it for non-stationary signal decomposition may not be effective and accurate. To apply the EWT method for time-varying system identification, in this study, time-frequency analysis based on SET is first performed to determine the frequency components of a non-stationary vibration signal instead of using Fourier spectrum. The filtering boundaries for EWT analysis are determined based on the time-frequency representation. Then, the IMFs are extracted from the non-stationary vibration signals by using EWT with the above defined filtering boundaries. When the IMFs are accurately obtained, the instantaneous frequencies of IMFs are identified by using Hilbert Transform (HT). In numerical simulations, a simulated signal with a high level noise is analyzed to verify the feasibility of using SET to define the filtering boundaries. Then the proposed approach is used to identify the instantaneous frequencies of a time-varying two-storey shear type building under earthquake and Gaussian white noise excitations, respectively. Experimental investigations on a time-varying bridge-vehicle system are conducted to verify the effectiveness of the proposed approach. The results in both numerical simulations and experimental validations demonstrate that the enhanced EWT approach can effectively and reliably identify the instantaneous frequencies of time-varying systems.
机译:在本文中,提出了一种基于同步置入变换(设定)的增强的经验小波变换(EWT)方法,用于时变系统识别。当具有时变物理性质的结构,即质量,刚度或阻尼,在外部激励下,结构动态响应通常是非静止的,因为该系统具有时变的动态振动特性。在这种情况下,难以使用傅里叶谱确定结构动态响应中包括的内在模式功能(IMF)的数量。考虑到传统EWT方法的过滤边界是基于处理信号的分段傅立叶谱定义的,直接使用用于非静止信号分解可能不是有效和准确的。为了应用EWT方法来进行时变系统识别,在本研究中,首先执行基于集的时频分析以确定非静止振动信号的频率分量而不是使用傅立叶频谱。基于时频表示确定EWT分析的过滤边界。然后,通过使用上述滤波边界的EWT从非静止振动信号中提取IMF。当准确获得IMF时,通过使用Hilbert变换(HT)来识别IMF的瞬时频率。在数值模拟中,分析了具有高级别噪声的模拟信号,以验证使用集合定义过滤边界的可行性。然后,所提出的方法分别用于识别地震和高斯白噪声激发下的时变两层剪切式建筑的瞬时频率。对时变桥式车辆系统进行实验研究,以验证所提出的方法的有效性。数值模拟和实验验证的结果表明,增强的EWT方法可以有效可靠地识别时变系统的瞬时频率。

著录项

  • 来源
    《Engineering Structures》 |2019年第1期|109313.1-109313.13|共13页
  • 作者

    Xin Yu; Hao Hong; Li Jun;

  • 作者单位

    Curtin Univ Sch Civil & Mech Engn Ctr Infrastruct Monitoring & Protect Kent St Bentley WA 6102 Australia;

    Curtin Univ Sch Civil & Mech Engn Ctr Infrastruct Monitoring & Protect Kent St Bentley WA 6102 Australia;

    Curtin Univ Sch Civil & Mech Engn Ctr Infrastruct Monitoring & Protect Kent St Bentley WA 6102 Australia|Guangzhou Univ Sch Civil Engn Guangzhou 510006 Guangdong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Time-varying system; Empirical Wavelet Transform; Synchroextracting Transform; Instantaneous frequency; Bridge-vehicle system;

    机译:时变系统;经验小波变换;同步置换变换;瞬时频率;桥式车辆系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号