首页> 外文期刊>Engineering Structures >Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements
【24h】

Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements

机译:从数字视频测量中盲目同时识别全场振动模式和仅输出结构的大型刚体运动

获取原文
获取原文并翻译 | 示例

摘要

Many operating structures undergo vibration associated with significant rigid-body motion, such as earthquake-excited structures which vibrate while moving (and/or rocking) along with the shaking ground, rotating structures such as the blades of helicopter, aircraft, wind turbine, and in UAV's measurements (images/videos) of infrastructure response which is coupled with the motion of the UAV itself. In many such cases, the rigid motion is very dominant; measurement and identification of the relatively subtle deformation (flexible) motion of the structure in their operations is very challenging, especially when high-resolution vibration measurement and high-fidelity dynamics modeling are required to capture and characterize spatially local and temporally transient dynamics behaviors and features of the structure. Traditional contact-type wired or wireless sensors, such as accelerometers, strain gauges, and LVDT's, are discrete point-wise sensors that only allow instrumentations at a limited number of places, providing very low spatial resolution vibration measurements. Non-contact interferometry-based optical measurement techniques using laser beams such as laser Doppler vibrometers, electronic speckle pattern interferometry (ESPI) and holographic interferometry, can provide high spatial resolution vibration measurement without the need to install sensors on the structure. However, they are very vulnerable to ambient vibration and rigid-body motion. As an alternative non-contact optical measurement method, photogrammetry uses white-light imaging of digital video cameras that are relatively low-cost, agile, and provides simultaneous measurements with very high spatial resolution where every pixel effectively becomes a sensing unit. Furthermore, it is robust to rigid-body motion. Using image processing algorithms such as optical flow and image correlation, photogrammetry has been successfully used for vibration measurements and experimental modal analysis of structures (including rotating-type) where full-field (or as many points as the pixel number of the image frame on the structure) modal parameters (mode shapes) can be obtained. However, existing such methods typically rely on installing and tracking the optical markers or speckle paints on the structure's surface, which becomes less applicable for large measurement area or in harsh environment (high temperature and corrosion). In addition, they are computationally extensive.Aiming to alleviate these challenges, this study presents the development of adapting a recently-proposed video-based method for output-only, simultaneous identification of both the subtle, full-field deformation modes and the dominant rigid-body motion from only the video of the vibrating while moving structure. Full-field dynamic parameters (deformation modes) of structure, as well as its rigid-body motion can be efficiently estimated, respectively. Laboratory experiments were conducted on a bench-scale building structure with "free-free" boundary condition. Comparisons were made with an analytical finite element model. Results demonstrate that the method can efficiently and accurately extract the full-field, (total) motion of the structure and further identify or separate the subtle deformation modes and large rigid-body motion, respectively. Furthermore, videos reconstructed by the method (provided in the supplementary materials) show that it enables realistic visualization of the subtle deformation modes of the structure in presence of large rigid-body motion. Several practical limitations for implementing the method are also discussed.
机译:许多运行结构会经受与大量刚体运动相关的振动,例如地震激发的结构(在与振动地面一起移动(和/或摇摆)时会振动),旋转结构(例如直升机,飞机,风力涡轮机的叶片和无人机对基础设施响应的测量(图像/视频)与无人机自身的运动相结合。在许多这样的情况下,刚性运动非常重要。在操作过程中测量和识别结构的相对细微变形(柔韧性)运动非常具有挑战性,尤其是在需要高分辨率振动测量和高保真动力学建模来捕获和表征空间局部和时间瞬态动力学行为和特征时,尤其如此结构。传统的接触式有线或无线传感器(例如加速度计,应变仪和LVDT)是离散的逐点传感器,仅允许在有限数量的位置使用仪器,从而提供非常低的空间分辨率振动测量。使用激光束的基于非接触式干涉测量的光学测量技术,例如激光多普勒振动计,电子散斑干涉法(ESPI)和全息干涉测量法,可以提供高空间分辨率的振动测量,而无需在结构上安装传感器。但是,它们非常容易受到环境振动和刚体运动的影响。作为一种可选的非接触式光学测量方法,摄影测量法使用数字摄像机的白光成像,该成像成本相对较低,灵敏,并且可以以非常高的空间分辨率同时进行测量,其中每个像素都有效地成为了一个传感单元。此外,它对刚体运动具有鲁棒性。使用诸如光流和图像相关性之类的图像处理算法,摄影测量法已成功用于振动测量和结构(包括旋转式)结构的实验模态分析,其中结构具有全视场(或与图像帧的像素数一样多的点)可以得到模态参数(模态形状)。然而,现有的此类方法通常依赖于在结构表面上安装和跟踪光学标记或斑点涂料,这变得不适用于较大的测量区域或恶劣的环境(高温和腐蚀)。此外,它们在计算上也很广泛。为了缓解这些挑战,本研究提出了将最近提出的基于视频的方法改编为仅输出,同时识别细微,全场变形模式和主要刚性变形的方法的发展。 -仅从移动结构时振动的视频获得的人体运动。可以分别有效地估计结构的全场动态参数(变形模式)及其刚体运动。在具有“自由-自由”边界条件的台式规模建筑结构上进行了实验室实验。用分析有限元模型进行比较。结果表明,该方法可以有效,准确地提取结构的全场(总)运动,并分别识别或分离出细微的变形模式和较大的刚体运动。此外,通过该方法重建的视频(在补充材料中提供)显示,在存在较大的刚体运动的情况下,它可以使结构的细微变形模式逼真的可视化。还讨论了实现该方法的一些实际限制。

著录项

  • 来源
    《Engineering Structures》 |2020年第15期|110183.1-110183.9|共9页
  • 作者

  • 作者单位

    Michigan Technol Univ Dept Mech Engn Engn Mech 1400 Townsend Dr Houghton MI 49931 USA|Los Alamos Natl Lab Engn Inst POB 1663 MS T001 Los Alamos NM 87545 USA|Argonne Natl Lab 9700 S Cass Ave Lemont IL 60439 USA;

    CALTECH Grad Aerosp Labs Pasadena CA 91125 USA;

    Los Alamos Natl Lab Engn Inst POB 1663 MS T001 Los Alamos NM 87545 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rigid-body motion; Vibration; Full-field measurement; Operational modal analysis; Photogrammetry; Blind source separation;

    机译:刚体运动;振动;全场测量;操作模式分析;摄影测量;盲源分离;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号