首页> 外文期刊>Engineering Optimization >Solving constrained optimization problems with a hybrid particle swarm optimization algorithm
【24h】

Solving constrained optimization problems with a hybrid particle swarm optimization algorithm

机译:用混合粒子群算法求解约束优化问题

获取原文
获取原文并翻译 | 示例

摘要

This article presents a particle swarm optimization algorithm for solving general constrained optimization problems. The proposed approach introduces different methods to update the particle's information, as well as the use of a double population and a special shake mechanism designed to avoid premature convergence. It also incorporates a simple constraint-handling technique. Twenty-four constrained optimization problems commonly adopted in the evolutionary optimization literature, as well as some structural optimization problems are adopted to validate the proposed approach. The results obtained by the proposed approach are compared with respect to those generated by algorithms representative of the state of the art in the area.
机译:本文提出了一种用于解决一般约束优化问题的粒子群优化算法。所提出的方法引入了更新粒子信息的不同方法,以及使用了双重填充和特殊的抖动机制,旨在避免过早收敛。它还结合了简单的约束处理技术。进化优化文献中普遍采用的二十四个约束优化问题以及一些结构优化问题被用来验证所提出的方法。通过提议的方法获得的结果将与代表该领域最新技术的算法所产生的结果进行比较。

著录项

  • 来源
    《Engineering Optimization》 |2011年第8期|p.843-866|共24页
  • 作者单位

    LIDIC (Research Group), Universidad Nacional de San Luis, Ej. de Los Andes 950, D5700HHW, San Luis, Argentina CINVESTAV-IPN (Evolutionary Computation Group), Departamento de Computación, Av. IPN No. 2508, Col. San Pedro Zacatenco, México D.F., 07360, M;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号