Shape representation plays a major role in any shape optimization exercise. The ability to identify a shape with good performance is dependent on both the flexibility of the shape representation scheme and the efficiency of the optimization algorithm. In this article, a memetic algorithm is presented for 2D shape matching problems. The shape is represented using B-splines, in which the control points representing the shape are repaired and subsequently evolved within the optimization framework. The underlying memetic algorithm is a multi-feature hybrid that combines the strength of a real coded genetic algorithm, differential evolution and a local search. The efficiency of the proposed algorithm is illustrated using three test problems, wherein the shapes were identified using a mere 5000 function evaluations. Extension of the approach to deal with problems of unknown shape complexity is also presented in the article.View full textDownload full textKeywordsshape representation, optimization, evolutionary algorithm, shape matchingRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/0305215X.2011.634408
展开▼