...
首页> 外文期刊>Engineering Computations >Numerical investigation of droplets-gas mixing performance in depth adjustable underwater launcher cooling chamber
【24h】

Numerical investigation of droplets-gas mixing performance in depth adjustable underwater launcher cooling chamber

机译:深度可调水下发射器冷却室内液滴与气体混合性能的数值研究

获取原文
获取原文并翻译 | 示例

摘要

Purpose The purpose of this study is to investigate structure parameters that influence the mixing process of droplets-gas in underwater depth-adjustable launcher cooling chamber and help engineers who design the launcher to distinguish the most important factor that impacts mixing performance in the cooling chamber.Design/methodology/approach Euler-Lagrangian droplet tracking method was used to simulate droplets-gas mixing process in the cooling chamber. The SST k-w model was adopted to simulate turbulence. Droplet breakup was described by KHRT hybrid model using modified contains which are more fit to the supersonic main flow condition.Findings The results show the counter-rotating vortex pairs which caused by injected liquid accelerate the mixing process. High-pressure supersonic freestream makes the liquid jet break into more small droplets due to the high momentum of the main stream. Axial injection angle has the greatest influence on Sauter mean diameter (SMD). Penetration height, SMD and total pressure loss slightly change in different tangential injection conditions. However, mixedness decreases with reduction of tangential injection angle due to a more limited space for spray developing. Enlarging orifice diameter raises penetration and mixedness greatly, while SMD and total pressure loss increase slightly.Originality/value The findings of this study confirm the key structure parameter to improve mixing performance in the cooling chamber. Engineers who design the underwater depth-adjustable launcher can refer the findings in this study to make control of launching power more accurate.
机译:目的这项研究的目的是研究影响水下深度可调发射器冷却室中液滴与气体混合过程的结构参数,并帮助设计发射器的工程师区分出影响冷却室混合性能的最重要因素。设计/方法/方法采用Euler-Lagrangian液滴跟踪方法来模拟冷却室内的液滴-气体混合过程。采用SST k-w模型来模拟湍流。通过KHRT混合模型描述了液滴的破裂,该模型使用了更适合超声速主流动条件的改进的容器。结果表明,由注入液体引起的反向旋转涡流加速了混合过程。由于主流的高动量,高压超音速自由流使液体射流破碎成更多小液滴。轴向注射角对Sauter平均直径(SMD)的影响最大。在不同的切向注入条件下,穿透高度,SMD和总压力损失会略有变化。然而,由于更有限的喷雾显影空间,混合性随着切向喷射角的减小而降低。孔口直径的增大大大增加了渗透性和混合性,而SMD和总压力损失则略有增加。原始数据/值本研究的结果证实了改善冷却室混合性能的关键结构参数。设计水下深度可调发射器的工程师可以参考本研究中的发现,以使发射功率的控制更加准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号