首页> 外文期刊>Engineering Computations >A hybrid ant colony optimization algorithm for solving facility layout problems formulated as quadratic assignment problems
【24h】

A hybrid ant colony optimization algorithm for solving facility layout problems formulated as quadratic assignment problems

机译:用于解决设施布置问题的混合蚁群优化算法,用二次分配问题解决

获取原文
获取原文并翻译 | 示例

摘要

Purpose - This paper aims to describe a new hybrid ant colony optimization (ACO) algorithmrndeveloped to solve facility layout problems (FLPs) formulated as quadratic assignment problemsrn(QAPs).rnDesign/methodology/approach - A hybrid ACO algorithm which combines max-min ant systemrn(MMAS) (I.e. a variant of ACO) with genetic algorithm (GA) has been developed. The hybridrnalgorithm is further improved with the use of a novel minimum pheromone threshold strategyrn(MPTS).rnFindings - The hybrid algorithm shows satisfactory results in the experimental evaluation due tornthe synergy and collaboration between MMAS and GA. The results also show that the use of MPTSrnhelps them to achieve such performance, by promoting search diversification.rnResearch limitations/implications - The experimental evaluation presented emphasizes more onrnthe search performance or pattern of the hybrid algorithm. Detailed computational work could revealrnother strengths of the algorithm.rnPractical implications - The developmental work presented in this paper could be used byrnresearchers and practitioners to solve QAPs. Its use may also be expanded to solve otherrncombinatorial optimization and engineering problems.rnOriginality/value - This paper provides useful insights into the development of a hybrid ACOrnalgorithm that combines MMAS with GA for solving QAPs.
机译:目的-本文旨在描述一种新的混合蚁群优化(ACO)算法,该算法是为解决设施布置问题(FLP)二次分配问题(QAP)而开发的。设计/方法/方法-一种结合了最大-最小蚂蚁的混合ACO算法已经开发了具有遗传算法(GA)的systemrn(MMAS)(即ACO的一种变体)。通过使用新型最小信息素阈值策略(MPTS),进一步改进了混合算法。发现-由于MMAS和GA之间的协同作用和协同作用,混合算法在实验评估中显示出令人满意的结果。结果还表明,MPTSrn的使用可通过促进搜索多样化来帮助他们实现这种性能。研究限制/意义-提出的实验评估更加强调了混合算法的搜索性能或模式。详细的计算工作可以揭示该算法的其他优点。实践意义-研究人员和从业人员可以使用本文中提出的开发工作来解决QAP。它的用途也可以扩展到解决其他组合优化和工程问题。原始性/价值-本文为结合MMAS和GA求解QAP的混合ACOrnalgorithm的开发提供了有用的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号