首页> 外文期刊>Engineering Computations >Algal bloom prediction by support vector machine and relevance vector machine with genetic algorithm optimization in freshwater reservoirs
【24h】

Algal bloom prediction by support vector machine and relevance vector machine with genetic algorithm optimization in freshwater reservoirs

机译:支持向量机和相关向量机结合遗传算法优化预测淡水水库藻华。

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to examine the applicability and capability of models based on a genetic algorithm and support vector machine (GA-SVM) and a genetic algorithm and relevance vector machine (GA-RVM) for the prediction of phytoplankton abundances associated with algal blooms in a Macau freshwater reservoir, and compare their performances with an artificial neural network (ANN) model.
机译:目的-本文的目的是检验基于遗传算法和支持向量机(GA-SVM)以及遗传算法和相关向量机(GA-RVM)的模型在浮游植物丰度预测中的适用性和功能澳门淡水水库中藻类大量繁殖的情况,并与人工神经网络(ANN)模型进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号