首页> 外文期刊>Engineering Applications of Artificial Intelligence >Image mining: issues, framework, a generic tool and its application to medical-image diagnosis
【24h】

Image mining: issues, framework, a generic tool and its application to medical-image diagnosis

机译:图像挖掘:问题,框架,通用工具及其在医学图像诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

A tool and a methodology for data mining in picture-archiving systems are presented. It is intended to discover the relevant knowledge for picture analysis and diagnosis from the data base of image descriptions. Knowledge-engineering methods are used to obtain a list of attributes for symbolic image descriptions. An expert describes images according to this list and stores descriptions in the data base. Digital-image processing can be applied to improve imaging of specific image features, or to get expert-independent feature evaluation. Decision-tree induction is used to learn the expert knowledge, presented in the form of image descriptions in the data base. A constructed decision tree presents effective models of decision-making, which can be learned to support image classification by the expert. A tool for data mining and image processing is presented and its application to image mining is shown on the task of Hep-2 cell-image classification. However, the tool and the methodology are generic and can be used for other image-mining tasks. We applied the developed methodology of data mining in other medical tasks, such as in lung-nodule diagnosis in X-ray images, lymph-node diagnosis in MRI and investigation of breast MRI.
机译:介绍了用于图片存档系统中数据挖掘的工具和方法。旨在从图像描述数据库中发现用于图像分析和诊断的相关知识。知识工程方法用于获取符号图像描述的属性列表。专家根据此列表描述图像并将描述存储在数据库中。可以应用数字图像处理来改善特定图像特征的成像,或者获得独立于专家的特征评估。决策树归纳法用于学习专家知识,以数据库中图像描述的形式呈现。构造的决策树提供了有效的决策模型,专家可以学习这些模型以支持图像分类。介绍了一种用于数据挖掘和图像处理的工具,并在Hep-2细胞图像分类任务上展示了其在图像挖掘中的应用。但是,该工具和方法是通用的,可用于其他图像挖掘任务。我们将开发的数据挖掘方法应用于其他医疗任务,例如X射线图像中的肺结节诊断,MRI中的淋巴结诊断和乳腺MRI研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号