首页> 外文期刊>Engineering Applications of Artificial Intelligence >A convex relaxation framework for a class of semi-supervised learning methods and its application in pattern recognition
【24h】

A convex relaxation framework for a class of semi-supervised learning methods and its application in pattern recognition

机译:一类半监督学习方法的凸松弛框架及其在模式识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Semi-supervised learning has been an attractive research tool for using unlabeled data in pattern recognition. Applying a novel semi-definite programming (SDP) relaxation strategy to a class of continuous semi-supervised support vector machines (S~3VMs), a new convex relaxation framework for the S~3VMs is proposed based on SDP. Compared with other SDP relaxations for S~3VMs, the proposed methods only require solving the primal problems and can implement L_1-norm regularization. Furthermore, the proposed technique is applied directly to recognize the purity of hybrid maize seeds using near-infrared spectral data, from which we find that the proposed method achieves equivalent performance to the exact solution algorithm for solving the S~3VM in different spectral regions. Experiments on several benchmark data sets demonstrate that the proposed convex technique is competitive with other SDP relaxation methods for solving semi-supervised SVMs in generalization.
机译:半监督学习已成为在模式识别中使用未标记数据的有吸引力的研究工具。将新颖的半定规划(SDP)松弛策略应用于一类连续的半监督支持向量机(S〜3VM),提出了一种基于SDP的S〜3VM凸凸松弛框架。与针对S〜3VM的其他SDP松弛相比,所提出的方法仅需要解决原始问题,即可实现L_1范数正则化。此外,所提出的技术直接用于利用近红外光谱数据识别杂交玉米种子的纯度,从中我们发现,所提出的方法与在不同光谱区域求解S〜3VM的精确求解算法具有相同的性能。在多个基准数据集上进行的实验表明,所提出的凸技术与其他SDP松弛方法在广义上解决半监督SVM相比具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号