首页> 外文期刊>Engineering Applications of Artificial Intelligence >Fault diagnosis using spatial and temporal information with application to railway track circuits
【24h】

Fault diagnosis using spatial and temporal information with application to railway track circuits

机译:利用时空信息进行故障诊断并应用于铁路线路

获取原文
获取原文并翻译 | 示例

摘要

Adequate fault diagnosis requires actual system data to discriminate between healthy behavior and various types of faulty behavior. Especially in large networks, it is often impracticable to monitor a large number of variables for each subsystem. This results in a need for fault diagnosis methods that can work with a limited set of monitoring signals. In this paper, we propose such an approach for fault diagnosis in networks. This approach is knowledge-based and uses the temporal, spatial, and spatio-temporal network dependencies as diagnostic features. These features can be derived from the existing monitoring signals; so no additional sensors are required. Besides that the proposed approach requires only a few monitoring devices, it is, thanks to the use of the spatial dependencies, robust with respect to environmental disturbances. For a railway track circuit example, we show that, without the temporal, spatial, and spatio-temporal features, it is not possible to identify the cause of a detected fault. Including the additional features allows potential causes to be identified. For the track circuit case, based on one signal, we can distinguish between six fault classes.
机译:充分的故障诊断需要实际的系统数据来区分正常行为和各种类型的错误行为。特别是在大型网络中,监视每个子系统的大量变量通常是不可行的。这导致需要可以与一组有限的监视信号一起工作的故障诊断方法。在本文中,我们提出了一种用于网络故障诊断的方法。这种方法是基于知识的,并使用时间,空间和时空网络依赖性作为诊断功能。这些特征可以从现有的监视信号中得出。因此不需要其他传感器。除此之外,所提出的方法仅需要很少的监视设备,由于使用了空间依赖性,因此对于环境干扰具有鲁棒性。对于一个铁路轨道电路示例,我们表明,如果没有时间,空间和时空特征,就不可能确定检测到的故障的原因。包含其他功能可以识别潜在原因。对于跟踪电路情况,基于一个信号,我们可以区分六个故障类别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号