首页> 外文期刊>Engineering Applications of Artificial Intelligence >Using machine learning to detect and localize concealed objects in passive millimeter-wave images
【24h】

Using machine learning to detect and localize concealed objects in passive millimeter-wave images

机译:使用机器学习来检测和定位被动毫米波图像中的隐藏对象

获取原文
获取原文并翻译 | 示例

摘要

The detection and location of objects concealed under clothing is a very challenging task that has crucial applications in security. In this domain, passive millimeter-wave images (PMMWIs) can be used. However, the quality of the acquired images, and the unknown position, shape, and size of hidden objects render this task difficult In this paper, we propose a machine learning-based solution to this detection/localization problem. Our method outperforms currently used approaches. The effect of non-stationary noise on different classification algorithms is analyzed and discussed, and a detailed experimental comparative study of classification techniques is presented using a new and comprehensive PMMWI database. The low computational testing cost of this solution allows for its use in real-time applications.
机译:对隐藏在衣服下的物体的检测和定位是一项非常具有挑战性的任务,在安全方面具有至关重要的应用。在此领域,可以使用无源毫米波图像(PMMWI)。但是,所获取图像的质量以及隐藏对象的未知位置,形状和大小使此任务变得困难。在本文中,我们针对此检测/定位问题提出了一种基于机器学习的解决方案。我们的方法优于目前使用的方法。分析和讨论了非平稳噪声对不同分类算法的影响,并使用一个新的,综合的PMMWI数据库对分类技术进行了详细的实验比较研究。该解决方案的低计算测试成本允许其在实时应用中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号