首页> 外文期刊>Engineering Applications of Artificial Intelligence >Sequential hypothesis tests for streaming data via symbolic time-series analysis
【24h】

Sequential hypothesis tests for streaming data via symbolic time-series analysis

机译:通过符号时间序列分析流传输数据的顺序假设测试

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses sequential hypothesis testing for Markov models of time-series data by using the concepts of symbolic dynamics. These models are inferred by discretizing the measurement space of a dynamical system, where the system dynamics are approximated as a finite-memory Markov chain on the discrete state space. The study is motivated by time-critical detection problems in physical processes, where a temporal model is trained to make fast and reliable decisions with streaming data. Sequential update rules have been constructed for log-posterior ratio statistic of Markov models in the setting of binary hypothesis testing and the stochastic evolution of this statistic is analyzed. The proposed technique allows selection of a lower bound on the performance of the detector and guarantees that the test will terminate in finite time. The underlying algorithms are first illustrated through an example by numerical simulation, and are subsequently validated on time-series data of pressure oscillations from a laboratory-scale swirl-stabilized combustor apparatus to detect the onset of thermo-acoustic instability. The performance of the proposed sequential hypothesis tests for Markov models has been compared with that of a maximum-likelihood classifier with fixed sample size (i.e., sequence length). It is shown that the proposed method yields reliable detection of combustion instabilities with fewer observations in comparison to a fixed-sample-size test.
机译:本文通过使用符号动态的概念,解决了时间序列数据的马尔可夫模型的顺序假设检测。通过离散地推断出这些模型推断出动态系统的测量空间,其中系统动态被近似为分立状态空间上的有限内存马尔可夫链。该研究是通过物理过程中的时间关键检测问题的动机,其中训练时间模型,以便利用流数据进行快速且可靠的决策。已经为Markov模型的日志后后比率统计构建了顺序更新规则,在模拟假设检测中,分析了这种统计数据的随机演化。所提出的技术允许在检测器的性能上选择下限,并保证测试将在有限时间内终止。首先通过数值模拟示例首先通过示例来示出底层算法,随后在来自实验室旋涡稳定的燃烧室设备的压力振荡的时序列数据上验证,以检测热声不稳定性的开始。已经将Markov模型的所提出的连续假设试验的性能与具有固定样本大小的最大似然分类器(即,序列长度)进行比较。结果表明,与固定样本尺寸试验相比,所提出的方法可靠地检测燃烧不稳定性,与较少的观察结果相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号