首页> 外文期刊>Engineering Applications of Artificial Intelligence >Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study
【24h】

Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study

机译:基于图像处理和深度学习技术的铁路扣件缺陷检测:对比研究

获取原文
获取原文并翻译 | 示例

摘要

The railway track fasteners play a critical role in fixing the track on the ballast bed. Achieving full automation of the fastener defect detection is significant in terms of ensuring track safety, and reducing maintains cost. In this paper, innovative and intelligent methods using image processing technologies and deep learning networks are proposed. In the first part, the traditional fastener positioning method based on image processing is reconsidered. In addition, a novel fastener defect detection and identification method using Dense-SIFT features is proposed which can achieve a better performance than the methods available in the literature. In the second part, VGG16 is trained for fastener defect detection and recognition. The result demonstrates that it is possible to carry out the defect detection of fasteners with CNN. Finally, Faster R-CNN is used for fastener defect detection to advance detection rate and efficiency. The fastener positioning and recognition can be carried out simultaneously. The time for the defect detection and classification is only one-tenth of the other methods mentioned above.
机译:铁路轨道紧固件在将轨道固定在道ast床上起着至关重要的作用。在确保轨道安全性并减少维护成本方面,实现紧固件缺陷检测的完全自动化具有重要意义。本文提出了使用图像处理技术和深度学习网络的创新和智能方法。在第一部分中,重新考虑了基于图像处理的传统紧固件定位方法。此外,提出了一种新颖的利用Dense-SIFT特征的紧固件缺陷检测和识别方法,该方法可以实现比文献中提供的方法更好的性能。在第二部分中,对VGG16进行了紧固件缺陷检测和识别的培训。结果表明,可以利用CNN进行紧固件的缺陷检测。最后,将Faster R-CNN用于紧固件缺陷检测以提高检测率和效率。紧固件的定位和识别可以同时进行。缺陷检测和分类的时间仅为上述其他方法的十分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号