首页> 外文期刊>Engineering analysis with boundary elements >Solutions of partial differential equations with random Dirichlet boundary conditions by multiquadric collocation method
【24h】

Solutions of partial differential equations with random Dirichlet boundary conditions by multiquadric collocation method

机译:多二次配点法求解具有随机Dirichlet边界条件的偏微分方程

获取原文
获取原文并翻译 | 示例

摘要

Problems described by deterministic partial differential equations with random Dirichlet boundary conditions are considered. Formulation of the solution to such a problem by the global collocation method using multiquadrics is presented. The quality of the solution to a stochastic problem depends on both its expected value and its variance. It is proposed that the shape parameter of multiquadrics should be chosen to optimize both the accuracy and the variance of the solution. Test problems described by the Poisson, the Helmholtz, and the diffusion-convection equations with random Dirichlet boundary conditions are solved by the multiquadric collocation method. It is found that there is a trade-off between solution accuracy and solution variance for each problem.
机译:考虑具有随机Dirichlet边界条件的确定性偏微分方程描述的问题。提出了使用多二次态的全局搭配方法来解决此类问题的方法。随机问题的解决方案的质量取决于其期望值和方差。提出应选择多二次方的形状参数以优化解的精度和方差。用二次配位方法解决了泊松,亥姆霍兹方程和具有随机狄里克雷边界条件的扩散对流方程所描述的测试问题。发现在每个问题的解决方案精度和解决方案方差之间都有一个权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号