首页> 外文期刊>Engineering analysis with boundary elements >Acoustic topology optimization of porous material distribution based on an adjoint variable FMBEM sensitivity analysis
【24h】

Acoustic topology optimization of porous material distribution based on an adjoint variable FMBEM sensitivity analysis

机译:基于伴随变量FMBEM灵敏度分析的多孔材料分布的声拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

We develop an acoustic topology optimization approach in this work for the surface design of structures covered by porous materials. The fast multipole boundary element method (FMBEM) is employed for the sound scattering analysis. The acoustic absorption characteristics of porous materials are numerically modeled using the Delany-Bazley-Miki empirical model. Based on the solid isotropic material with penalization (SIMP) method, the optimization is performed by setting the artificial element densities of porous material as the design variables, minimizing the sound pressure or the dissipated sound power as the design objective. As a key treatment in this study, we develop a fast sensitivity analysis approach based on an adjoint variable method (AVM) and the fast multipole method (FMM) to calculate the sensitivities of the objective function with respect to a large number of design variables. The FMM is applied to accelerate the vector-matrix product required by the AVM. According to the gradient information, the method of moving asymptotes (MMA) is used for solving the optimization problem to find the optimal solution. We validate the proposed topology optimization approach through numerical examples of acoustic scattering over a single cylinder and multi cylinders, and demonstrate its ability to handle large-scale problems.
机译:在这项工作中,我们为多孔材料覆盖的结构的表面设计开发了一种声学拓扑优化方法。快速多极边界元法(FMBEM)用于声音散射分析。使用Delany-Bazley-Miki经验模型对多孔材料的吸声特性进行数值建模。基于带有罚分的固体各向同性材料(SIMP),通过将多孔材料的人工元素密度设置为设计变量,以使声压或耗散声功率最小为设计目标来进行优化。作为这项研究的重点,我们开发了一种基于伴随变量法(AVM)和快速多极子方法(FMM)的快速灵敏度分析方法,以针对大量设计变量计算目标函数的灵敏度。 FMM用于加速AVM所需的矢量矩阵乘积。根据梯度信息,采用渐近移动法(MMA)解决了优化问题,从而找到了最优解。我们通过在单个圆柱和多个圆柱上进行声散射的数值示例来验证所提出的拓扑优化方法,并证明其处理大规模问题的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号