首页> 外文期刊>Energy & fuels >Scale-Dependent Pore and Hydraulic Connectivity of Shale Matrix
【24h】

Scale-Dependent Pore and Hydraulic Connectivity of Shale Matrix

机译:页岩基质的尺度相关孔隙和水力连通性

获取原文
获取原文并翻译 | 示例
       

摘要

Shale resources have distinctive characteristics compared to conventional reservoirs, including microsized pores (IUPAC definition), ultralow permeability, several gas storage mechanisms, and complex fluid flow behavior. Prediction of productivity and deliverability of shale systems requires knowledge about in situ porosity and permeability. In this study, we evaluate pore and hydraulic connectivity of matrix for Barnett and Haynesville shale plays based on mercury injection capillary pressure (MICP) data and percolation theory. Using MICP porosity values measured at the laboratory for different sample size, accessible porosity and permeability for Barnett and Haynesville shale samples are reported. Next, pore and hydraulic connectivity for both Barnett and Haynesville samples are evaluated based on percolation theory. Moreover, permeability values that have been calculated based on MICP data are used to estimate the average coordination number as a function of sample size. Our results Indicate that accessible porosity and matrix permeability decreases with increasing sample size, which predicts lower connectivity for shale matrix in large scale. Consistent with percolation theory, results suggest that accessible porosity decreases with increasing sample size, following a power law function. Furthermore, results show that sample size has a significant impact on the estimated coordination number; this is expected, because interconnected porosity is a strong function of the average coordination number. The main contribution of this work is the evaluation of accessible porosity and pore connectivity for different sample sizes from two shale plays. The new insight about scale -dependent pore connectivity and interconnected porosity may lead to improved predictions of production performance and project economics.
机译:与常规储层相比,页岩资源具有鲜明的特征,包括微孔(IUPAC定义),超低渗透率,多种储气机理和复杂的流体流动行为。预测页岩系统的生产率和可输送性需要有关原位孔隙率和渗透率的知识。在这项研究中,我们基于汞注入毛细管压力(MICP)数据和渗流理论,评估了Barnett和Haynesville页岩气藏基质的孔隙和水力连通性。使用实验室中针对不同样本量测得的MICP孔隙度值,报告了Barnett和Haynesville页岩样品的孔隙度和渗透率。接下来,基于渗流理论评估Barnett和Haynesville样品的孔隙和水力连通性。此外,已经基于MICP数据计算出的渗透率值被用来估计平均配位数作为样品量的函数。我们的结果表明,随着样品数量的增加,可达到的孔隙度和基质渗透率降低,这预示着页岩基质的连通性较低。与渗流理论一致,结果表明,随幂律函数的变化,可达到的孔隙度随样品数量的增加而降低。此外,结果表明,样本量对估计的协调数有重大影响;这是可以预料的,因为互连孔隙率是平均配位数的强函数。这项工作的主要贡献是评估了来自两个页岩层的不同样品尺寸的可达到的孔隙度和孔隙连通性。关于尺度相关的孔隙连通性和互连孔隙度的新见解可能会导致对生产性能和项目经济性的预测得到改善。

著录项

  • 来源
    《Energy & fuels》 |2018年第1期|99-106|共8页
  • 作者单位

    Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, Norman, OK 73019 USA;

    Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, Norman, OK 73019 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号