首页> 外文期刊>Energy & fuels >Supercritical Methane Diffusion in Shale Nanopores: Effects of Pressure, Mineral Types, and Moisture Content
【24h】

Supercritical Methane Diffusion in Shale Nanopores: Effects of Pressure, Mineral Types, and Moisture Content

机译:页岩纳米孔中的超临界甲烷扩散:压力,矿物类型和水分含量的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Using molecular dynamics, we simulated the diffusion behavior of supercritical methane in shale nanopores composed of different matrix mineral types (organic matter, clay, and calcite). We studied the effects of pore size, pore pressure, and moisture content on the diffusion process. Our results show that confined methane molecules diffuse more rapidly with increases in pore size and temperature but diffuse slowly with an increase in pressure. Anisotropic diffusion behavior is also observed in directions parallel and perpendicular to the basal surfaces of nanoslits. We also found that mineral types composing the pore walls have a prominent effect on gas diffusion. The perfectly ordered structure and ultrasmooth surface of organic matter facilitate the transport of methane in dry pores, even though its adsorption capability is much stronger than that of inorganic minerals. Moisture inhibits methane diffusion, but this adverse effect is more evident in organic pores because water migrates in the form of cluster, which acts as a piston and severely impedes methane diffusion. However, only an adsorbed water membrane is present at the surfaces of inorganic materials, leading to a weaker impact on methane diffusion. Remarkably, the ratios of the self-diffusion coefficients of the confined fluid and bulk phases at different temperatures collapse onto a master curve dependent solely on the slit aperture. Therefore, we propose a mathematical model to facilitate up-scaling studies from atomistic computations to macroscale measurements. The findings of this study provides a better understanding of hydrocarbon transport through shale formation, which is fundamentally important for reliably predicting production performance and optimizing hydraulic-fracturing design.
机译:使用分子动力学,我们模拟了超临界甲烷在由不同基质矿物类型(有机物,粘土和方解石)组成的页岩纳米孔中的扩散行为。我们研究了孔径,孔压和水分含量对扩散过程的影响。我们的结果表明,受限的甲烷分子随着孔径和温度的增加而扩散更快,而随着压力的增加而缓慢扩散。在与纳米狭缝的基底表面平行和垂直的方向上也观察到各向异性扩散行为。我们还发现组成孔壁的矿物类型对气体扩散具有显着影响。有机物质的完美有序结构和超光滑表面有助于甲烷在干燥孔中的运输,即使它的吸附能力比无机矿物强得多。水分会抑制甲烷的扩散,但是这种不利影响在有机孔中更为明显,因为水以团簇的形式迁移,而团簇则起着活塞的作用,严重阻碍了甲烷的扩散。然而,在无机材料的表面上仅存在吸附的水膜,导致对甲烷扩散的影响较小。值得注意的是,在不同温度下,承压流体和本体相的自扩散系数之比塌陷到仅取决于狭缝孔径的主曲线上。因此,我们提出了一个数学模型,以促进从原子计算到大规模测量的放大研究。这项研究的结果使人们更好地了解了通过页岩层形成的碳氢化合物的输送,这对于可靠地预测生产性能和优化水力压裂设计至关重要。

著录项

  • 来源
    《Energy & fuels》 |2018年第1期|169-180|共12页
  • 作者单位

    China Univ Petr East China, Qingdao 266580, Peoples R China;

    China Univ Petr East China, Qingdao 266580, Peoples R China;

    China Univ Petr East China, Qingdao 266580, Peoples R China;

    Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA;

    China Univ Geosci, Key Lab Tecton & Petr Resources, Minist Educ, Wuhan 430074, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号