...
首页> 外文期刊>Energy Conversion & Management >Thermal-hydraulics analyses for 1/6 prismatic VHTR core and fuel element with and without bypass flow
【24h】

Thermal-hydraulics analyses for 1/6 prismatic VHTR core and fuel element with and without bypass flow

机译:有/无旁通流量的1/6棱柱形VHTR堆芯和燃料元件的热工液压分析

获取原文
获取原文并翻译 | 示例

摘要

Presented are the results of thermal-hydraulics analyses for a Very High Temperature Reactor (VHTR) 1/6 core and hexagonal fuel element, with and without helium-coolant bypass flow in interstitial gaps and in the control rod channels. Owing to the complexity and massive size of the VHTR, a full core analysis requires extensive and parallelized computation capabilities and a long time (weeks to months) to complete. These demanding requirements are mostly due to the 3-D computational fluid dynamics (CFD) simulation of the helium flow in the 10-m long coolant channels in the reactor core. Results demonstrate the effectiveness of coupling a 1-D helium flow in the channels together with a recently developed and validated convective heat transfer correlation, to a 3-D heat conduction in the graphite and fuel compacts in the core fuel elements. This simplified thermal-hydraulics analysis methodology for VHTR markedly reduces computation time and memory requirements, while maintaining accurate results. The helium bypass flow in interstitial gaps between fuel elements in the VHTR core provides additional cooling of the edge regions, but increases the temperature near the center of the prismatic fuel elements. Results also show that helium "bleed" flow through the control rod channels minimally affects the temperature distribution within the fuel elements. The heat generation in the corner burnable poison rods in the VHTR core fuel elements affects the temperature only in the close vicinity of the rods.
机译:给出的是高温反应堆(VHTR)1/6堆芯和六角形燃料元件的热工液压分析结果,在间隙和控制杆通道中有或没有氦冷却剂旁路流动。由于VHTR的复杂性和庞大的规模,全内核分析需要广泛且并行的计算能力,而且需要较长的时间(数周至数月)才能完成。这些苛刻的要求主要是由于对反应堆堆芯中10 m长的冷却剂通道中的氦流进行了3-D计算流体动力学(CFD)模拟。结果表明,将通道中的一维氦气流与最近开发并经过验证的对流传热相关性与石墨中的3-D热传导以及核心燃料元件中的燃料块体耦合的有效性。 VHTR的这种简化的热工液压分析方法显着减少了计算时间和内存需求,同时保持了准确的结果。 VHTR堆芯中燃料元件之间的间隙中的氦旁路流提供了边缘区域的额外冷却,但增加了棱柱形燃料元件中心附近的温度。结果还表明,氦气“流失”通过控制杆通道的流动对燃料元件内的温度分布影响最小。 VHTR核心燃料元件中的拐角可燃毒气棒产生的热量仅影响棒附近的温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号