首页> 外文期刊>Energy Conversion & Management >Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for particle-based high temperature concentrating solar power plants
【24h】

Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for particle-based high temperature concentrating solar power plants

机译:超临界二氧化碳布雷顿循环对粒子高温浓缩太阳能发电厂的设计与缺点性能比较

获取原文
获取原文并翻译 | 示例
       

摘要

Concentrated solar power (CSP) plants using dense particle suspension as heat transfer fluid and particles as the storage medium are considered as a promising solution to provide the high temperature required for the supercritical carbon dioxide (S-CO2) Brayton cycle. During plant operation, variations in the heat transfer fluid temperature and ambient temperature would significantly affect system performance. Determining the suitable S-CO2 Brayton cycle configuration for this particle-based CSP plant requires accurate prediction and comprehensive comparison on the system performance both at design and off-design conditions. This study presents a common methodology to homogeneously assess the plant performance for six 10 MW S-CO2 Brayton cycles (i.e. simple regeneration, recompression, precompression, intercooling, partial cooling and split expansion) integrated with a hot particles thermal energy storage and a dry cooling system. This methodology includes both design and off-design detailed models based on the characteristic curves of all components. The optimal design for each thermodynamic cycle has been determined under the same boundary design constrains by a genetic algorithm. Then, their off-design performances have been quantitatively compared under varying particle inlet temperature and ambient temperature, in terms of cycle efficiency, net power output and specific work. Results show that the variation in ambient temperature contributes to a greater influence on the cycle off-design performance than typical variations of the heat transfer fluid temperature. Cycles with higher complexity have larger performance deterioration when the ambient temperature increases, though they could present higher peak efficiency and specific work at design-point. In particular, the cycle with maximum efficiency or specific work presents significant changes in different ranges of ambient temperature. This means that for the selection of the best configuration, the typical off-design operation conditions should be considered as well. For integrating with high-temperature CSP plants and dry cooling systems, the simple regeneration and the recompression cycles are the most suitable S-CO2 Brayton cycle configurations due to their fewer performance degradations at ambient temperatures above 30 degrees C, which is a frequent environmental condition in sunny areas of the world.
机译:使用致密颗粒悬浮液作为传热流体和颗粒作为储存介质的浓缩太阳能(CSP)植物被认为是提供超临界二氧化碳(S-CO2)Brayton循环所需的高温的有希望的溶液。在植物操作期间,传热流体温度和环境温度的变化会显着影响系统性能。确定该基于颗粒基CSP工厂的合适的S-CO2 Brayton循环配置需要在设计和非设计条件下进行精确的预测和全面的系统性能比较。本研究呈现了均匀评估六10 MW S-CO2布雷顿循环的植物性能的常见方法(即简单的再生,重新压缩,再压缩,部分冷却和分离膨胀),整合在热粒子的热能储存和干燥冷却系统。该方法包括基于所有组件的特征曲线的设计和非设计详细模型。通过遗传算法在相同的边界设计下确定了每个热力学周期的最佳设计。然后,在循环效率,净功率输出和特定工作方面,在不同的粒子入口温度和环境温度下定量地比较了它们的非设计性能。结果表明,环境温度的变化有助于对循环偏移的影响更大,而不是传热流体温度的典型变化。当环境温度升高时,复杂性较高的循环具有更大的性能恶化,尽管它们可以在设计点呈现更高的峰值效率和特定工作。特别是,具有最大效率或特定工作的循环具有不同的环境温度范围的显着变化。这意味着对于选择最佳配置,也应考虑典型的非设计操作条件。为了与高温CSP植物和干燥冷却系统集成,简单的再生和重新压缩循环是最合适的S-CO2 BRAYTON循环配置,因为它们在30摄氏度高于30摄氏度的环境温度下的性能下降,这是常规的环境条件在世界的阳光领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号