首页> 外文期刊>IEEE Transactions on Electron Devices >Highly Manufacturable Advanced Gate-Stack Technology for Sub-45-nm Self-Aligned Gate-First CMOSFETs
【24h】

Highly Manufacturable Advanced Gate-Stack Technology for Sub-45-nm Self-Aligned Gate-First CMOSFETs

机译:高度可制造的先进栅极堆叠技术,用于低于45nm的自对准栅极优先CMOSFET

获取原文
获取原文并翻译 | 示例
           

摘要

Issues surrounding the integration of Hf-based dielectrics with metal gates in a conventional CMOS flow are discussed. The careful choice of a gate-stack process as well as optimization of other CMOS process steps enable robust metal/High-κ CMOSFETs with wide process latitude. HfO{sub}2 of a 2-nm physical thickness shows a very minimal transient charge trapping resulting from kinetically suppressed crystallization. Thickness of metal electrode is also a critical factor to optimize physical-stress effects and minimize dopant diffusion. A high-temperature anneal after source/drain implantation in a conventional CMOSFET process is found to reduce the interface state density and improve the electron mobility. Even though MOSFET process using single midgap metal gate addresses fundamental issues related to implementing metal/High-κ stack, integrating two different metals on the same wafer (i.e., dual metal gate) poses several additional challenges, such as metal gate separation between n- and pMOS and gate-stack dry etch. We demonstrate that a dual metal gate CMOSFET yields high-performance devices even with a conventional gate-first approach if an appropriate metal separation between band-edge metal for nMOS and pMOS is incorporated. Optimization of dry-etch process enables gentle and complete removal of two different metal gate stacks on ultra-thin High-κ layer.
机译:讨论了围绕Hf基电介质与常规CMOS流中的金属栅极的集成问题。栅堆叠工艺的精心选择以及其他CMOS工艺步骤的优化,使坚固的金属/高κCMOSFET具有宽的工艺范围。物理厚度为2 nm的HfO {sub} 2显示出由于动力学抑制的结晶而产生的非常小的瞬态电荷俘获。金属电极的厚度也是优化物理应力效应并使掺杂剂扩散最小化的关键因素。发现在常规CMOSFET工艺中的源极/漏极注入之后的高温退火降低了界面态密度并改善了电子迁移率。即使使用单个中间能隙金属栅极的MOSFET工艺解决了与实现金属/高κ堆叠相关的基本问题,但将两种不同的金属集成在同一晶片上(即双金属栅极)也带来了其他一些挑战,例如n-金属之间的金属栅极分离以及pMOS和栅堆叠干法刻蚀。我们证明,如果在nMOS和pMOS的带边金属之间采用适当的金属分隔,则即使采用传统的“先栅极”方法,双金属栅极CMOSFET仍可产生高性能的器件。通过优化干蚀刻工艺,可以轻柔,完全地去除超薄High-κ层上的两种不同的金属栅叠层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号