首页> 外文期刊>Electron Devices, IEEE Transactions on >Gate-Length Scaling of Ultrashort Metamorphic High-Electron Mobility Transistors With Asymmetrically Recessed Gate Contacts for Millimeter- and Submillimeter-Wave Applications
【24h】

Gate-Length Scaling of Ultrashort Metamorphic High-Electron Mobility Transistors With Asymmetrically Recessed Gate Contacts for Millimeter- and Submillimeter-Wave Applications

机译:具有毫米波和亚毫米波应用的不对称凹入式栅极触点的超短变质高电子迁移率晶体管的栅极长度缩放

获取原文
获取原文并翻译 | 示例

摘要

We have fabricated and characterized ultrashort gate-length metamorphic high-electron mobility transistors (HEMTs) optimized for high gain performance for millimeter- and submillimeter-wave applications. In this paper, we have systematically evaluated the impact of gate length in the range of 25–50 nm on the device performance by exploring epitaxial layer designs, gate-to-channel distances, and recess widths. The study shows the 25-nm devices underperform their 50-nm counterparts in most of the key figures of merit including output conductance, voltage gain, off-state breakdown, on-state breakdown, and, most importantly, the maximum stable gain. This observation is actually in good agreement with the state-of-the-art results published so far, which indicate that the best overall performance of HEMTs for millimeter- and submillimeter-wave applications comes from devices with gate lengths ranging from 35 to 50 nm. The 25-nm devices, on the other hand, appear to have difficulty in achieving the proper vertical scaling for optimum gain, which is limited by the minimum gate layer thickness necessary to retain good Schottky characteristics. This limitation may eventually be overcome with the adoption of new materials used as the gate layer that can be integrated into the HEMT fabrication process.
机译:我们已经制造并表征了超短栅极长度变质高电子迁移率晶体管(HEMT),这些晶体管针对毫米波和亚毫米波应用的高增益性能进行了优化。在本文中,我们通过探索外延层设计,栅极到沟道的距离以及凹槽宽度,系统地评估了25-50 nm范围内的栅极长度对器件性能的影响。研究表明,在大多数关键性能指标中,包括输出电导,电压增益,断态击穿,导通状态击穿以及最重要的是最大稳定增益,25nm器件的性能均不及50nm器件。该观察结果实际上与迄今为止发布的最新结果高度吻合,该结果表明,HEMT在毫米波和亚毫米波应用中的最佳整体性能来自栅极长度为35至50 nm的器件。另一方面,该25 nm器件似乎难以实现适当的垂直缩放以获得最佳增益,这受到保持良好肖特基特性所需的最小栅极层厚度的限制。通过采用可以集成到HEMT制造工艺中的用作栅极层的新材料,最终可以克服这一局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号