首页> 外文期刊>IEEE Transactions on Electron Devices >Fundamental Limit to Scaling Si Field-Effect Transistors Due to Source-to-Drain Direct Tunneling
【24h】

Fundamental Limit to Scaling Si Field-Effect Transistors Due to Source-to-Drain Direct Tunneling

机译:源极到漏极直接隧穿的缩放Si场效应晶体管的基本限制

获取原文
获取原文并翻译 | 示例

摘要

How far can the miniaturization of metal-oxide-semiconductor field-effect transistors (MOSFETs) continue is a recurring question, essential to all aspects of digital technology. Recent claims of well-performing MOSFETs with gate lengths below 4 nm apparently defy the fundamental limit of source-to-drain direct tunneling (SDDT). Here, we investigate that limit by simulating gate-all-around Si nanowire FETs with gate lengths between 8 and 3 nm using the state-of-the-art atomistic quantum transport modeling. We find that at 3-nm gate length, the current is dominated by SDDT, resulting in large source-drain leakage and poor switching performance even if the gate modulates the potential barrier between the source and drain sufficiently well. However, at 6-nm gate-length SDDT barely starts to degrade the subthreshold characteristics at large drain bias, and the ballistic ON-/OFF-current ratio is similar to 10(6) with a subthreshold swing of 70 mV/decade, on par with contemporary Si technology. This means that in the best case, the technology roadmap could potentially be extended for several generations beyond the currently projected nodes. In addition, the results substantiate that the experimental devices with the claimed gate lengths below 6 nm in fact operate with a longer effective gate lengths.
机译:金属氧化物半导体场效应晶体管(MOSFET)的微型化能持续到多远是一个反复出现的问题,对于数字技术的各个方面都是必不可少的。栅极长度小于4 nm的性能良好的MOSFET的最新主张显然违反了源漏直接隧道(SDDT)的基本限制。在这里,我们通过使用最先进的原子量子传输模型模拟栅极长度在8到3 nm之间的全栅Si纳米线FET来研究该极限。我们发现,在栅极长度为3 nm的情况下,电流受SDDT的支配,即使栅极对源极和漏极之间的势垒进行了足够好的调制,也会导致大的源极-漏极泄漏和较差的开关性能。但是,在6nm的栅极长度下,SDDT在大的漏极偏置下几乎没有开始降低亚阈值特性,并且弹道开/关电流比与10(6)相似,亚阈值摆幅为70mV / decade。与当代硅技术相当。这意味着在最佳情况下,技术路线图可能会扩展几代,超出当前计划的节点。另外,结果证实了具有所要求的栅极长度小于6nm的实验装置实际上以更长的有效栅极长度工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号