首页> 外文期刊>Distributed and Parallel Databases >An intelligent surveillance video analytics framework using NACT-Hadoop/MapReduce on cloud services
【24h】

An intelligent surveillance video analytics framework using NACT-Hadoop/MapReduce on cloud services

机译:使用Nact-Hadoop / MapReduce在云服务上进行智能监视视频分析框架

获取原文
获取原文并翻译 | 示例

摘要

Video analytics has gradually increased in recent years. The intelligent CCTV cameras in public places, you-tube videos, etc. generate an enormous amount of video data. Generally, video analytics required more time as it contains several processes like encoding, decoding, etc. There are several existing approaches are evolved in improving the efficiency of video analytics but performance delay and loss of data still existing challenges. With our analysis, we strongly state VM migration will be an effective solution to overcome this delay and performance issues. In this paper, we propose NACT based map reducing mechanism (NACT-Map) for processing the real-time streaming videos. The NACT (Novel Awaiting Computation Time) enables the prediction of VM allocation and automatic migration. The scheduling and allocating of the optimal resource are done by task monitor who utilizes the Task manager (TM) system. The NACT based VM migration and MapReduce technique with Hadoop simplifies the process and minimizes the execution time. The splitting of video into chunks of frames speedup the process. Further efficiency is improved by the Map Reduce technique which uses video and its related content for clusters. The performance of our proposed system is executed in the cloudsim with a large dataset contains two real-time videos. Further, the result is compared with the existing methodologies such as distributed video decoding mechanism with extended FFmpeg and VideoRecordReader (VDMFF) (Yoon et al. in Distributed video decoding on Hadoop. IEICE Trans Inf Syst E101-D(1):2933-2941, 2018) and distributed Video Analytics Framework for Intelligent Video Surveillance (SIAT) (Uddin et al. in SIAT: a distributed video analytics framework for intelligent video surveillance. Symmetry 11:911, 2019). The obtained result shows our proposed NACT_Map consumes minimum Task processing time (p(tix)) and about 90% of efficiency in overall system performance is increased.
机译:近年来视频分析逐渐增加。智能CCTV摄像机在公共场所,您的管视频等中产生大量的视频数据。通常,视频分析需要更多的时间,因为它包含了若干像编码,解码等的过程。在提高视频分析的效率,但性能延迟和数据损失仍然存在挑战,存在若干现有方法。通过我们的分析,我们强烈的州VM迁移将是克服这种延迟和性能问题的有效解决方案。在本文中,我们提出了基于NACT的地图减少机制(NACT-MAP),用于处理实时流视频。 nact(新闻等待计算时间)启用VM分配和自动迁移的预测。最佳资源的调度和分配由使用任务管理器(TM)系统的任务监视器完成。具有Hadoop的基于NACT的VM迁移和MapReduce技术简化了过程并最大限度地减少了执行时间。将视频分成帧的块加速过程。通过地图减少技术来改善进一步的效率,该技术使用视频及其相关内容的集群。我们提出的系统的性能在Cloudsim中执行,大型数据集包含两个实时视频。此外,将结果与具有扩展FFMPEG和视频解码机制(VDMFF)(VDMFF)的分布式视频解码机制等现有方法进行了比较(Yoon等人。在Hadoop上的分布式视频解码中。Ieice Trans INF SYST E101-D(1):2933-2941 ,2018年)和分布式视频分析智能视频监控(SIAT)的视频分析框架(Uddin等人。在诉讼中:智能视频监控的分布式视频分析框架。对称11:911,2019)。所获得的结果表明我们提出的Nact_Map消耗最小任务处理时间(P(Tix)),并且在整体系统性能中大约90%的效率增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号