首页> 外文期刊>Distributed and Parallel Databases >TPStream: low-latency and high-throughput temporal pattern matching on event streams
【24h】

TPStream: low-latency and high-throughput temporal pattern matching on event streams

机译:TPStream:在事件流上匹配的低延迟和高吞吐量时间模式

获取原文

摘要

Sequential pattern matching to detect a user-defined sequence of conditions on event streams is a key feature in modern event processing systems. However, the sequential nature of event based pattern matching has two major deficiencies. First, it is hardly possible to express complex temporal relationships between situations lasting for periods of time. Because events are equipped with a single timestamp only, the expressible temporal relations are limited to before/after/at the same time. Second, a sequential pattern is mapped to a continuous subsequence of the input stream starting with an arbitrary event, making efficient parallelization a hard problem. In this paper we present TPStream, a novel event processing operator for complex temporal pattern matching on event streams. TPStream first summarizes incoming events to situations lasting for periods of time, before it matches temporal patterns. With situations, temporal patterns can easily be defined based on Allen's interval algebra. We also show that situation based temporal pattern matching can be efficiently executed in parallel using multiple threads on a single machine or multiple machines in a cluster. Finally, we present adaptive optimization components continuously tuning the execution strategy of TPStream towards the lowest possible result latency with respect to the overall system load. The results of our experimental evaluation show that TPStream is capable of processing high-volume event streams with both low latency and high throughput while outperforming applicable CEP solutions from academia and industry.
机译:序列模式匹配以检测事件流上的用户定义条件序列是现代事件处理系统中的关键特征。然而,基于事件的模式匹配的顺序性质具有两个主要的缺陷。首先,几乎可以在持续时间持续时间之间表达复杂的时间关系。由于事件仅配备了单个时间戳,因此可表现的时间关系仅限于/后/之后/以后。其次,顺序模式被映射到以任意事件开始的输入流的连续子序列,使得有效并行化难以解决。在本文中,我们呈现TPStream,一种用于在事件流上的复杂时间模式匹配的新事件处理运算符。 TPStream首先将传入的事件汇总到持续时间段的情况,然后匹配时间模式。在情况下,可以基于Allen的间隔代数轻松定义时间模式。我们还表明,基于情况的时间模式匹配可以在群集中的单个机器或多台机器上使用多个线程并行地有效地执行。最后,我们呈现了相对于整体系统负载的最低可能结果延迟的TPStream的执行策略的自适应优化组件。我们的实验评估结果表明,TPStream能够处理具有低延迟和高吞吐量的高批量事件流,同时优于学术界和工业的适用性CEP解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号