首页> 外文期刊>Distributed and Parallel Databases >Dissecting GeoSparkSim: a scalable microscopic road network traffic simulator in Apache Spark
【24h】

Dissecting GeoSparkSim: a scalable microscopic road network traffic simulator in Apache Spark

机译:解剖Geosparksim:Apache Spark中可扩展的微观路线网络流量模拟器

获取原文
获取原文并翻译 | 示例

摘要

Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install global positioning system(GPS) receivers and administrators must continuously monitor these devices. There have been some urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) Scalability: most of them only offer single-machine solution which is not adequate to produce large-scale data. Some simulators can generate traffic in parallel but do not well balance the load among machines in a cluster. (2) Granularity: many simulators do not consider microscopic traffic situations including traffic lights, lane changing, car following. This paper proposed GeoSparkSim, a scalable traffic simulator which extends Apache Spark to generate large-scale road network traffic datasets with microscopic traffic simulation. The proposed system seamlessly integrates with a Spark-based spatial data management system, GeoSpark, to deliver a holistic approach that allows data scientists to simulate, analyze and visualize large-scale urban traffic data. To implement microscopic traffic models, GeoSparkSim employs a simulation-aware vehicle partitioning method to partition vehicles among different machines such that each machine has a balanced workload. The experimental analysis shows that GeoSparkSim can simulate the movements of 300 thousand vehicles over a very large road network (250 thousand road junctions and 300 thousand road segments) and outperform the existing competitors.
机译:研究人员和从业者在城市规划,交通预测和空间 - 时间数据库等不同领域中广泛研究了道路网络交通数据。例如,研究人员使用此类数据来评估道路网络的影响。不幸的是,收集大规模的高质量城市交通数据需要巨大的努力,因为参与车辆必须安装全球定位系统(GPS)接收者,管理员必须连续监控这些设备。有一些城市交通模拟器试图使用不同的功能生成此类数据。但是,它们遭受了两个关键问题(1)可扩展性:其中大多数仅提供单机解决方案,不足以产生大规模数据。有些模拟器可以并行生成流量,但不正确平衡集群中的机器之间的负载。 (2)粒度:许多模拟器不考虑微观交通情况,包括交通灯,车道更换,车跟随。本文提出了GEOSPARKSIM,可扩展的流量模拟器扩展了Apache Spark,以产生具有微观流量模拟的大规模道路网络流量数据集。所提出的系统与基于Spark的空间数据管理系统,Geospark无缝集成,以提供整体方法,允许数据科学家模拟,分析和可视化大型城市交通数据。为了实现微观流量模型,GeosparkSim采用模拟感知的车辆分区方法来分隔不同机器的车辆,使得每台机器具有平衡的工作量。实验分析表明,Geosparksim可以在非常大的道路网络(25万道路交叉路口和300万道路段)上模拟300万辆车辆的运动,并且优于现有的竞争对手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号