首页> 外文期刊>Distributed and Parallel Databases >A social network approach for recommending interoperable Web services
【24h】

A social network approach for recommending interoperable Web services

机译:推荐互操作性Web服务的社交网络方法

获取原文
获取原文并翻译 | 示例

摘要

Modern application development leverages the invocation of a large pool of Web services such as Cloud services and APIs. As the number of Web services keeps growing, it becomes difficult for developers to identify services that can collaborate as part of the same composite application, or that can replace each other in failure cases. Gathering and analyzing Web services social interaction such as composition, substitution, and subscription helps building communities of interoperable services (i.e., likely to collaborate with each other and/or to replace each other). This paper proposes a new approach for recommending interoperable services to developers based on the multi-dimensional analysis of their social interaction history. The approach aims to build communities of services with highly dense interaction relationships. Services part of the same community are recommended to developers as potential collaborators or substitutes. The proposed approach identifies first serviceleaders. Leaders are particular services with a high interaction rate in the network around which communities are built. Remaining servicesfollowersjoin communities based on their previous interaction experiences.Followersleverage the votes of their experienced neighbors to make their final vote. Experiments on pseudo-real data show that leveraging services social interaction outperforms state-of-the-art approaches.
机译:现代应用程序开发利用云服务和API等大量Web服务的调用。随着Web服务的数量不断增长,开发人员将难以识别可以作为相同复合应用程序的一部分协作的服务,或者可以在故障情况下互相替换。收集和分析Web服务社交互动,如组成,替代和订阅,有助于构建可互操作的服务的社区(即,可能彼此合作和/或互相替换)。本文提出了一种新的方法,可以根据其社交互动历史的多维分析推荐对开发人员的互操作性服务。该方法旨在建立具有高度密集的相互作用关系的服务社区。建议开发人员作为潜在合作者或替代品的服务部分。建议的方法识别第一个服务员。领导者是在网络中具有高相互作用率的特殊服务,周围的网络构建了哪些。剩余的服务是基于他们以前的互动经历的社区。录制他们经验丰富的邻居的投票才能完成最终投票。伪实物数据的实验表明,利用服务社会互动优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号