首页> 外文期刊>Distributed and Parallel Databases >Optimizing thermal design of data center cabinets with a new multi-objective genetic algorithm
【24h】

Optimizing thermal design of data center cabinets with a new multi-objective genetic algorithm

机译:使用新的多目标遗传算法优化数据中心机柜的散热设计

获取原文
获取原文并翻译 | 示例

摘要

is then used to form the objective and constraint functions of an optimization model. Next, this optimization model is integrated with the new MOGA. The new MOGA uses a "kriging" guided operation in addition to conventional genetic algorithm operations to search the design space for global optimal design solutions. This approach for optimal design is essential to handle complex multi-objective situations, where the optimal solutions may be non-obvious from simple analyses or intuition. It is shown that in optimizing the data center cabinet problem, the new MOGA outperforms a conventional MOGA by estimating the Pareto front using 50% fewer simulation calls, which makes its use very promising for complex thermal design problems.
机译:然后使用来形成优化模型的目标和约束函数。接下来,此优化模型与新的MOGA集成在一起。新的MOGA除传统的遗传算法操作外,还使用“克里金法”指导操作,以在设计空间中搜索全局最优设计解决方案。这种最佳设计方法对于处理复杂的多目标情况至关重要,在这种情况下,通过简单的分析或直觉就无法得出最佳解决方案。结果表明,在优化数据中心机柜问题时,新的MOGA通过减少50%的模拟调用来估计Pareto前沿,从而胜过传统的MOGA,这使其在复杂的热设计问题中的应用前景十分广阔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号