首页> 外文期刊>Distributed and Parallel Databases >Continuously monitoring top-k uncertain data streams: a probabilistic threshold method
【24h】

Continuously monitoring top-k uncertain data streams: a probabilistic threshold method

机译:连续监视前k个不确定数据流:概率阈值方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, uncertain data processing has become more and more important. Although a significant amount of previous research explores various continuous queries on data streams, continuous queries on uncertain data streams have seldom been investigated. In this paper, we formulate a novel and challenging problem of continuously monitoring top-k uncertain data streams, and propose a probabilistic threshold method. We develop four algorithms systematically: a deterministic exact algorithm, a randomized method, and their space-efficient versions using quantile summaries. An extensive empirical study using real data sets and synthetic data sets is reported to verify the effectiveness and the efficiency of our methods.
机译:近来,不确定的数据处理变得越来越重要。尽管大量的先前研究探索了对数据流的各种连续查询,但是很少研究对不确定数据流的连续查询。在本文中,我们提出了一个连续不断地监视top-k不确定数据流的挑战性新问题,并提出了一种概率阈值方法。我们系统地开发了四种算法:确定性精确算法,随机方法及其使用分位数摘要的空间高效版本。据报道,使用真实数据集和综合数据集进行了广泛的实证研究,以验证我们方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号